ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax1rid Unicode version

Theorem ax1rid 7972
Description:  1 is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 8014. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.)
Assertion
Ref Expression
ax1rid  |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )

Proof of Theorem ax1rid
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-r 7917 . 2  |-  RR  =  ( R.  X.  { 0R } )
2 oveq1 5941 . . 3  |-  ( <.
x ,  y >.  =  A  ->  ( <.
x ,  y >.  x.  1 )  =  ( A  x.  1 ) )
3 id 19 . . 3  |-  ( <.
x ,  y >.  =  A  ->  <. x ,  y >.  =  A )
42, 3eqeq12d 2219 . 2  |-  ( <.
x ,  y >.  =  A  ->  ( (
<. x ,  y >.  x.  1 )  =  <. x ,  y >.  <->  ( A  x.  1 )  =  A ) )
5 elsni 3650 . . 3  |-  ( y  e.  { 0R }  ->  y  =  0R )
6 df-1 7915 . . . . . . 7  |-  1  =  <. 1R ,  0R >.
76oveq2i 5945 . . . . . 6  |-  ( <.
x ,  0R >.  x.  1 )  =  (
<. x ,  0R >.  x. 
<. 1R ,  0R >. )
8 1sr 7846 . . . . . . . 8  |-  1R  e.  R.
9 mulresr 7933 . . . . . . . 8  |-  ( ( x  e.  R.  /\  1R  e.  R. )  -> 
( <. x ,  0R >.  x.  <. 1R ,  0R >. )  =  <. (
x  .R  1R ) ,  0R >. )
108, 9mpan2 425 . . . . . . 7  |-  ( x  e.  R.  ->  ( <. x ,  0R >.  x. 
<. 1R ,  0R >. )  =  <. ( x  .R  1R ) ,  0R >. )
11 1idsr 7863 . . . . . . . 8  |-  ( x  e.  R.  ->  (
x  .R  1R )  =  x )
1211opeq1d 3824 . . . . . . 7  |-  ( x  e.  R.  ->  <. (
x  .R  1R ) ,  0R >.  =  <. x ,  0R >. )
1310, 12eqtrd 2237 . . . . . 6  |-  ( x  e.  R.  ->  ( <. x ,  0R >.  x. 
<. 1R ,  0R >. )  =  <. x ,  0R >. )
147, 13eqtrid 2249 . . . . 5  |-  ( x  e.  R.  ->  ( <. x ,  0R >.  x.  1 )  =  <. x ,  0R >. )
15 opeq2 3819 . . . . . . 7  |-  ( y  =  0R  ->  <. x ,  y >.  =  <. x ,  0R >. )
1615oveq1d 5949 . . . . . 6  |-  ( y  =  0R  ->  ( <. x ,  y >.  x.  1 )  =  (
<. x ,  0R >.  x.  1 ) )
1716, 15eqeq12d 2219 . . . . 5  |-  ( y  =  0R  ->  (
( <. x ,  y
>.  x.  1 )  = 
<. x ,  y >.  <->  (
<. x ,  0R >.  x.  1 )  =  <. x ,  0R >. )
)
1814, 17imbitrrid 156 . . . 4  |-  ( y  =  0R  ->  (
x  e.  R.  ->  (
<. x ,  y >.  x.  1 )  =  <. x ,  y >. )
)
1918impcom 125 . . 3  |-  ( ( x  e.  R.  /\  y  =  0R )  ->  ( <. x ,  y
>.  x.  1 )  = 
<. x ,  y >.
)
205, 19sylan2 286 . 2  |-  ( ( x  e.  R.  /\  y  e.  { 0R } )  ->  ( <. x ,  y >.  x.  1 )  =  <. x ,  y >. )
211, 4, 20optocl 4749 1  |-  ( A  e.  RR  ->  ( A  x.  1 )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   {csn 3632   <.cop 3635  (class class class)co 5934   R.cnr 7392   0Rc0r 7393   1Rc1r 7394    .R cmr 7397   RRcr 7906   1c1 7908    x. cmul 7912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4334  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-1o 6492  df-2o 6493  df-oadd 6496  df-omul 6497  df-er 6610  df-ec 6612  df-qs 6616  df-ni 7399  df-pli 7400  df-mi 7401  df-lti 7402  df-plpq 7439  df-mpq 7440  df-enq 7442  df-nqqs 7443  df-plqqs 7444  df-mqqs 7445  df-1nqqs 7446  df-rq 7447  df-ltnqqs 7448  df-enq0 7519  df-nq0 7520  df-0nq0 7521  df-plq0 7522  df-mq0 7523  df-inp 7561  df-i1p 7562  df-iplp 7563  df-imp 7564  df-enr 7821  df-nr 7822  df-plr 7823  df-mr 7824  df-0r 7826  df-1r 7827  df-m1r 7828  df-c 7913  df-1 7915  df-r 7917  df-mul 7919
This theorem is referenced by:  rereceu  7984  recriota  7985
  Copyright terms: Public domain W3C validator