Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax1rid | Unicode version |
Description: is an identity element for real multiplication. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1rid 7860. (Contributed by Scott Fenton, 3-Jan-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ax1rid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-r 7763 | . 2 | |
2 | oveq1 5849 | . . 3 | |
3 | id 19 | . . 3 | |
4 | 2, 3 | eqeq12d 2180 | . 2 |
5 | elsni 3594 | . . 3 | |
6 | df-1 7761 | . . . . . . 7 | |
7 | 6 | oveq2i 5853 | . . . . . 6 |
8 | 1sr 7692 | . . . . . . . 8 | |
9 | mulresr 7779 | . . . . . . . 8 | |
10 | 8, 9 | mpan2 422 | . . . . . . 7 |
11 | 1idsr 7709 | . . . . . . . 8 | |
12 | 11 | opeq1d 3764 | . . . . . . 7 |
13 | 10, 12 | eqtrd 2198 | . . . . . 6 |
14 | 7, 13 | syl5eq 2211 | . . . . 5 |
15 | opeq2 3759 | . . . . . . 7 | |
16 | 15 | oveq1d 5857 | . . . . . 6 |
17 | 16, 15 | eqeq12d 2180 | . . . . 5 |
18 | 14, 17 | syl5ibr 155 | . . . 4 |
19 | 18 | impcom 124 | . . 3 |
20 | 5, 19 | sylan2 284 | . 2 |
21 | 1, 4, 20 | optocl 4680 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 csn 3576 cop 3579 (class class class)co 5842 cnr 7238 c0r 7239 c1r 7240 cmr 7243 cr 7752 c1 7754 cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-2o 6385 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-enq0 7365 df-nq0 7366 df-0nq0 7367 df-plq0 7368 df-mq0 7369 df-inp 7407 df-i1p 7408 df-iplp 7409 df-imp 7410 df-enr 7667 df-nr 7668 df-plr 7669 df-mr 7670 df-0r 7672 df-1r 7673 df-m1r 7674 df-c 7759 df-1 7761 df-r 7763 df-mul 7765 |
This theorem is referenced by: rereceu 7830 recriota 7831 |
Copyright terms: Public domain | W3C validator |