ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  optocl GIF version

Theorem optocl 4529
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
Hypotheses
Ref Expression
optocl.1 𝐷 = (𝐵 × 𝐶)
optocl.2 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
optocl.3 ((𝑥𝐵𝑦𝐶) → 𝜑)
Assertion
Ref Expression
optocl (𝐴𝐷𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem optocl
StepHypRef Expression
1 elxp3 4507 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)))
2 opelxp 4483 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) ↔ (𝑥𝐵𝑦𝐶))
3 optocl.3 . . . . . . 7 ((𝑥𝐵𝑦𝐶) → 𝜑)
42, 3sylbi 120 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) → 𝜑)
5 optocl.2 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
64, 5syl5ib 153 . . . . 5 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) → 𝜓))
76imp 123 . . . 4 ((⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)) → 𝜓)
87exlimivv 1825 . . 3 (∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)) → 𝜓)
91, 8sylbi 120 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝜓)
10 optocl.1 . 2 𝐷 = (𝐵 × 𝐶)
119, 10eleq2s 2183 1 (𝐴𝐷𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1290  wex 1427  wcel 1439  cop 3455   × cxp 4452
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2624  df-un 3006  df-in 3008  df-ss 3015  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-opab 3908  df-xp 4460
This theorem is referenced by:  2optocl  4530  3optocl  4531  ecoptocl  6395  ax1rid  7475  ax0id  7476  axcnre  7479
  Copyright terms: Public domain W3C validator