![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > optocl | GIF version |
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.) |
Ref | Expression |
---|---|
optocl.1 | ⊢ 𝐷 = (𝐵 × 𝐶) |
optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
optocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
Ref | Expression |
---|---|
optocl | ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp3 4698 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶))) | |
2 | opelxp 4674 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
3 | optocl.3 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
4 | 2, 3 | sylbi 121 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) → 𝜑) |
5 | optocl.2 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | imbitrid 154 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) → 𝜓)) |
7 | 6 | imp 124 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶)) → 𝜓) |
8 | 7 | exlimivv 1908 | . . 3 ⊢ (∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶)) → 𝜓) |
9 | 1, 8 | sylbi 121 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝜓) |
10 | optocl.1 | . 2 ⊢ 𝐷 = (𝐵 × 𝐶) | |
11 | 9, 10 | eleq2s 2284 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2160 〈cop 3610 × cxp 4642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-opab 4080 df-xp 4650 |
This theorem is referenced by: 2optocl 4721 3optocl 4722 ecoptocl 6648 ax1rid 7906 ax0id 7907 axcnre 7910 |
Copyright terms: Public domain | W3C validator |