| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > optocl | GIF version | ||
| Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.) |
| Ref | Expression |
|---|---|
| optocl.1 | ⊢ 𝐷 = (𝐵 × 𝐶) |
| optocl.2 | ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) |
| optocl.3 | ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) |
| Ref | Expression |
|---|---|
| optocl | ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp3 4737 | . . 3 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶))) | |
| 2 | opelxp 4713 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) | |
| 3 | optocl.3 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) → 𝜑) | |
| 4 | 2, 3 | sylbi 121 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) → 𝜑) |
| 5 | optocl.2 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 6 | 4, 5 | imbitrid 154 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 = 𝐴 → (〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶) → 𝜓)) |
| 7 | 6 | imp 124 | . . . 4 ⊢ ((〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶)) → 𝜓) |
| 8 | 7 | exlimivv 1921 | . . 3 ⊢ (∃𝑥∃𝑦(〈𝑥, 𝑦〉 = 𝐴 ∧ 〈𝑥, 𝑦〉 ∈ (𝐵 × 𝐶)) → 𝜓) |
| 9 | 1, 8 | sylbi 121 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) → 𝜓) |
| 10 | optocl.1 | . 2 ⊢ 𝐷 = (𝐵 × 𝐶) | |
| 11 | 9, 10 | eleq2s 2301 | 1 ⊢ (𝐴 ∈ 𝐷 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∃wex 1516 ∈ wcel 2177 〈cop 3641 × cxp 4681 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-opab 4114 df-xp 4689 |
| This theorem is referenced by: 2optocl 4760 3optocl 4761 ecoptocl 6722 ax1rid 8010 ax0id 8011 axcnre 8014 |
| Copyright terms: Public domain | W3C validator |