ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  optocl GIF version

Theorem optocl 4704
Description: Implicit substitution of class for ordered pair. (Contributed by NM, 5-Mar-1995.)
Hypotheses
Ref Expression
optocl.1 𝐷 = (𝐵 × 𝐶)
optocl.2 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
optocl.3 ((𝑥𝐵𝑦𝐶) → 𝜑)
Assertion
Ref Expression
optocl (𝐴𝐷𝜓)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem optocl
StepHypRef Expression
1 elxp3 4682 . . 3 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)))
2 opelxp 4658 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) ↔ (𝑥𝐵𝑦𝐶))
3 optocl.3 . . . . . . 7 ((𝑥𝐵𝑦𝐶) → 𝜑)
42, 3sylbi 121 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) → 𝜑)
5 optocl.2 . . . . . 6 (⟨𝑥, 𝑦⟩ = 𝐴 → (𝜑𝜓))
64, 5imbitrid 154 . . . . 5 (⟨𝑥, 𝑦⟩ = 𝐴 → (⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶) → 𝜓))
76imp 124 . . . 4 ((⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)) → 𝜓)
87exlimivv 1896 . . 3 (∃𝑥𝑦(⟨𝑥, 𝑦⟩ = 𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐵 × 𝐶)) → 𝜓)
91, 8sylbi 121 . 2 (𝐴 ∈ (𝐵 × 𝐶) → 𝜓)
10 optocl.1 . 2 𝐷 = (𝐵 × 𝐶)
119, 10eleq2s 2272 1 (𝐴𝐷𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wex 1492  wcel 2148  cop 3597   × cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-opab 4067  df-xp 4634
This theorem is referenced by:  2optocl  4705  3optocl  4706  ecoptocl  6624  ax1rid  7878  ax0id  7879  axcnre  7882
  Copyright terms: Public domain W3C validator