| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax0id | Unicode version | ||
| Description: In the Metamath Proof Explorer this is not a complex number axiom but is instead proved from other axioms. That proof relies on excluded middle and it is not known whether it is possible to prove this from the other axioms without excluded middle. (Contributed by Jim Kingdon, 16-Jan-2020.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ax0id |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-c 7966 |
. 2
| |
| 2 | oveq1 5974 |
. . 3
| |
| 3 | id 19 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2222 |
. 2
|
| 5 | 0r 7898 |
. . . 4
| |
| 6 | addcnsr 7982 |
. . . 4
| |
| 7 | 5, 5, 6 | mpanr12 439 |
. . 3
|
| 8 | df-0 7967 |
. . . . . 6
| |
| 9 | 8 | eqcomi 2211 |
. . . . 5
|
| 10 | 9 | a1i 9 |
. . . 4
|
| 11 | 10 | oveq2d 5983 |
. . 3
|
| 12 | 0idsr 7915 |
. . . . 5
| |
| 13 | 12 | adantr 276 |
. . . 4
|
| 14 | 0idsr 7915 |
. . . . 5
| |
| 15 | 14 | adantl 277 |
. . . 4
|
| 16 | 13, 15 | opeq12d 3841 |
. . 3
|
| 17 | 7, 11, 16 | 3eqtr3d 2248 |
. 2
|
| 18 | 1, 4, 17 | optocl 4769 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-2o 6526 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-enq0 7572 df-nq0 7573 df-0nq0 7574 df-plq0 7575 df-mq0 7576 df-inp 7614 df-i1p 7615 df-iplp 7616 df-enr 7874 df-nr 7875 df-plr 7876 df-0r 7879 df-c 7966 df-0 7967 df-add 7971 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |