ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelon GIF version

Theorem ordelon 4437
Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
ordelon ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)

Proof of Theorem ordelon
StepHypRef Expression
1 ordelord 4435 . 2 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
2 elong 4427 . . 3 (𝐵𝐴 → (𝐵 ∈ On ↔ Ord 𝐵))
32adantl 277 . 2 ((Ord 𝐴𝐵𝐴) → (𝐵 ∈ On ↔ Ord 𝐵))
41, 3mpbird 167 1 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2177  Ord word 4416  Oncon0 4417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-in 3176  df-ss 3183  df-uni 3856  df-tr 4150  df-iord 4420  df-on 4422
This theorem is referenced by:  onelon  4438  ordsson  4547  ordpwsucss  4622  tfr1onlemsucfn  6438  tfr1onlemsucaccv  6439  tfr1onlembfn  6442  tfr1onlemubacc  6444  tfr1onlemaccex  6446  tfrcllemsucfn  6451  tfrcllemsucaccv  6452  tfrcllembfn  6455  tfrcllemubacc  6457  tfrcllemaccex  6459  tfrcl  6462
  Copyright terms: Public domain W3C validator