| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelon | GIF version | ||
| Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.) |
| Ref | Expression |
|---|---|
| ordelon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordelord 4435 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | |
| 2 | elong 4427 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ On ↔ Ord 𝐵)) | |
| 3 | 2 | adantl 277 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ On ↔ Ord 𝐵)) |
| 4 | 1, 3 | mpbird 167 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 Ord word 4416 Oncon0 4417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-in 3176 df-ss 3183 df-uni 3856 df-tr 4150 df-iord 4420 df-on 4422 |
| This theorem is referenced by: onelon 4438 ordsson 4547 ordpwsucss 4622 tfr1onlemsucfn 6438 tfr1onlemsucaccv 6439 tfr1onlembfn 6442 tfr1onlemubacc 6444 tfr1onlemaccex 6446 tfrcllemsucfn 6451 tfrcllemsucaccv 6452 tfrcllembfn 6455 tfrcllemubacc 6457 tfrcllemaccex 6459 tfrcl 6462 |
| Copyright terms: Public domain | W3C validator |