![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordelon | GIF version |
Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
ordelon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord 4217 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | |
2 | elong 4209 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ On ↔ Ord 𝐵)) | |
3 | 2 | adantl 272 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ On ↔ Ord 𝐵)) |
4 | 1, 3 | mpbird 166 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1439 Ord word 4198 Oncon0 4199 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-in 3006 df-ss 3013 df-uni 3660 df-tr 3943 df-iord 4202 df-on 4204 |
This theorem is referenced by: onelon 4220 ordsson 4322 ordpwsucss 4396 tfr1onlemsucfn 6119 tfr1onlemsucaccv 6120 tfr1onlembfn 6123 tfr1onlemubacc 6125 tfr1onlemaccex 6127 tfrcllemsucfn 6132 tfrcllemsucaccv 6133 tfrcllembfn 6136 tfrcllemubacc 6138 tfrcllemaccex 6140 tfrcl 6143 |
Copyright terms: Public domain | W3C validator |