ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelon GIF version

Theorem ordelon 4473
Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.)
Assertion
Ref Expression
ordelon ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)

Proof of Theorem ordelon
StepHypRef Expression
1 ordelord 4471 . 2 ((Ord 𝐴𝐵𝐴) → Ord 𝐵)
2 elong 4463 . . 3 (𝐵𝐴 → (𝐵 ∈ On ↔ Ord 𝐵))
32adantl 277 . 2 ((Ord 𝐴𝐵𝐴) → (𝐵 ∈ On ↔ Ord 𝐵))
41, 3mpbird 167 1 ((Ord 𝐴𝐵𝐴) → 𝐵 ∈ On)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wcel 2200  Ord word 4452  Oncon0 4453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458
This theorem is referenced by:  onelon  4474  ordsson  4583  ordpwsucss  4658  tfr1onlemsucfn  6484  tfr1onlemsucaccv  6485  tfr1onlembfn  6488  tfr1onlemubacc  6490  tfr1onlemaccex  6492  tfrcllemsucfn  6497  tfrcllemsucaccv  6498  tfrcllembfn  6501  tfrcllemubacc  6503  tfrcllemaccex  6505  tfrcl  6508
  Copyright terms: Public domain W3C validator