![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ordelon | GIF version |
Description: An element of an ordinal class is an ordinal number. (Contributed by NM, 26-Oct-2003.) |
Ref | Expression |
---|---|
ordelon | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordelord 4208 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | |
2 | elong 4200 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ On ↔ Ord 𝐵)) | |
3 | 2 | adantl 271 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → (𝐵 ∈ On ↔ Ord 𝐵)) |
4 | 1, 3 | mpbird 165 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ On) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∈ wcel 1438 Ord word 4189 Oncon0 4190 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-in 3005 df-ss 3012 df-uni 3654 df-tr 3937 df-iord 4193 df-on 4195 |
This theorem is referenced by: onelon 4211 ordsson 4309 ordpwsucss 4383 tfr1onlemsucfn 6105 tfr1onlemsucaccv 6106 tfr1onlembfn 6109 tfr1onlemubacc 6111 tfr1onlemaccex 6113 tfrcllemsucfn 6118 tfrcllemsucaccv 6119 tfrcllembfn 6122 tfrcllemubacc 6124 tfrcllemaccex 6126 tfrcl 6129 |
Copyright terms: Public domain | W3C validator |