ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovconst2 Unicode version

Theorem ovconst2 6028
Description: The value of a constant operation. (Contributed by NM, 5-Nov-2006.)
Hypothesis
Ref Expression
oprvalconst2.1  |-  C  e. 
_V
Assertion
Ref Expression
ovconst2  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( R ( ( A  X.  B )  X.  { C }
) S )  =  C )

Proof of Theorem ovconst2
StepHypRef Expression
1 df-ov 5880 . 2  |-  ( R ( ( A  X.  B )  X.  { C } ) S )  =  ( ( ( A  X.  B )  X.  { C }
) `  <. R ,  S >. )
2 opelxpi 4660 . . 3  |-  ( ( R  e.  A  /\  S  e.  B )  -> 
<. R ,  S >.  e.  ( A  X.  B
) )
3 oprvalconst2.1 . . . 4  |-  C  e. 
_V
43fvconst2 5734 . . 3  |-  ( <. R ,  S >.  e.  ( A  X.  B
)  ->  ( (
( A  X.  B
)  X.  { C } ) `  <. R ,  S >. )  =  C )
52, 4syl 14 . 2  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( ( ( A  X.  B )  X. 
{ C } ) `
 <. R ,  S >. )  =  C )
61, 5eqtrid 2222 1  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( R ( ( A  X.  B )  X.  { C }
) S )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   _Vcvv 2739   {csn 3594   <.cop 3597    X. cxp 4626   ` cfv 5218  (class class class)co 5877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator