ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovconst2 Unicode version

Theorem ovconst2 5993
Description: The value of a constant operation. (Contributed by NM, 5-Nov-2006.)
Hypothesis
Ref Expression
oprvalconst2.1  |-  C  e. 
_V
Assertion
Ref Expression
ovconst2  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( R ( ( A  X.  B )  X.  { C }
) S )  =  C )

Proof of Theorem ovconst2
StepHypRef Expression
1 df-ov 5845 . 2  |-  ( R ( ( A  X.  B )  X.  { C } ) S )  =  ( ( ( A  X.  B )  X.  { C }
) `  <. R ,  S >. )
2 opelxpi 4636 . . 3  |-  ( ( R  e.  A  /\  S  e.  B )  -> 
<. R ,  S >.  e.  ( A  X.  B
) )
3 oprvalconst2.1 . . . 4  |-  C  e. 
_V
43fvconst2 5701 . . 3  |-  ( <. R ,  S >.  e.  ( A  X.  B
)  ->  ( (
( A  X.  B
)  X.  { C } ) `  <. R ,  S >. )  =  C )
52, 4syl 14 . 2  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( ( ( A  X.  B )  X. 
{ C } ) `
 <. R ,  S >. )  =  C )
61, 5syl5eq 2211 1  |-  ( ( R  e.  A  /\  S  e.  B )  ->  ( R ( ( A  X.  B )  X.  { C }
) S )  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   <.cop 3579    X. cxp 4602   ` cfv 5188  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator