ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovelimab Unicode version

Theorem ovelimab 5992
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ovelimab  |-  ( ( F  Fn  A  /\  ( B  X.  C
)  C_  A )  ->  ( D  e.  ( F " ( B  X.  C ) )  <->  E. x  e.  B  E. y  e.  C  D  =  ( x F y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, F, y

Proof of Theorem ovelimab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fvelimab 5542 . 2  |-  ( ( F  Fn  A  /\  ( B  X.  C
)  C_  A )  ->  ( D  e.  ( F " ( B  X.  C ) )  <->  E. z  e.  ( B  X.  C ) ( F `  z )  =  D ) )
2 fveq2 5486 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5845 . . . . . 6  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3eqtr4di 2217 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( x F y ) )
54eqeq1d 2174 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  =  D  <->  ( x F y )  =  D ) )
6 eqcom 2167 . . . 4  |-  ( ( x F y )  =  D  <->  D  =  ( x F y ) )
75, 6bitrdi 195 . . 3  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  =  D  <->  D  =  (
x F y ) ) )
87rexxp 4748 . 2  |-  ( E. z  e.  ( B  X.  C ) ( F `  z )  =  D  <->  E. x  e.  B  E. y  e.  C  D  =  ( x F y ) )
91, 8bitrdi 195 1  |-  ( ( F  Fn  A  /\  ( B  X.  C
)  C_  A )  ->  ( D  e.  ( F " ( B  X.  C ) )  <->  E. x  e.  B  E. y  e.  C  D  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   E.wrex 2445    C_ wss 3116   <.cop 3579    X. cxp 4602   "cima 4607    Fn wfn 5183   ` cfv 5188  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-ov 5845
This theorem is referenced by:  dfz2  9263  elq  9560
  Copyright terms: Public domain W3C validator