ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovelimab Unicode version

Theorem ovelimab 6038
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ovelimab  |-  ( ( F  Fn  A  /\  ( B  X.  C
)  C_  A )  ->  ( D  e.  ( F " ( B  X.  C ) )  <->  E. x  e.  B  E. y  e.  C  D  =  ( x F y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, F, y

Proof of Theorem ovelimab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fvelimab 5585 . 2  |-  ( ( F  Fn  A  /\  ( B  X.  C
)  C_  A )  ->  ( D  e.  ( F " ( B  X.  C ) )  <->  E. z  e.  ( B  X.  C ) ( F `  z )  =  D ) )
2 fveq2 5527 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5891 . . . . . 6  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3eqtr4di 2238 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( x F y ) )
54eqeq1d 2196 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  =  D  <->  ( x F y )  =  D ) )
6 eqcom 2189 . . . 4  |-  ( ( x F y )  =  D  <->  D  =  ( x F y ) )
75, 6bitrdi 196 . . 3  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  =  D  <->  D  =  (
x F y ) ) )
87rexxp 4783 . 2  |-  ( E. z  e.  ( B  X.  C ) ( F `  z )  =  D  <->  E. x  e.  B  E. y  e.  C  D  =  ( x F y ) )
91, 8bitrdi 196 1  |-  ( ( F  Fn  A  /\  ( B  X.  C
)  C_  A )  ->  ( D  e.  ( F " ( B  X.  C ) )  <->  E. x  e.  B  E. y  e.  C  D  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1363    e. wcel 2158   E.wrex 2466    C_ wss 3141   <.cop 3607    X. cxp 4636   "cima 4641    Fn wfn 5223   ` cfv 5228  (class class class)co 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-sbc 2975  df-csb 3070  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-iun 3900  df-br 4016  df-opab 4077  df-id 4305  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-fv 5236  df-ov 5891
This theorem is referenced by:  dfz2  9338  elq  9635
  Copyright terms: Public domain W3C validator