ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovelimab Unicode version

Theorem ovelimab 5914
Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013.) (Revised by Mario Carneiro, 29-Jan-2014.)
Assertion
Ref Expression
ovelimab  |-  ( ( F  Fn  A  /\  ( B  X.  C
)  C_  A )  ->  ( D  e.  ( F " ( B  X.  C ) )  <->  E. x  e.  B  E. y  e.  C  D  =  ( x F y ) ) )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, F, y

Proof of Theorem ovelimab
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 fvelimab 5470 . 2  |-  ( ( F  Fn  A  /\  ( B  X.  C
)  C_  A )  ->  ( D  e.  ( F " ( B  X.  C ) )  <->  E. z  e.  ( B  X.  C ) ( F `  z )  =  D ) )
2 fveq2 5414 . . . . . 6  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5770 . . . . . 6  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3syl6eqr 2188 . . . . 5  |-  ( z  =  <. x ,  y
>.  ->  ( F `  z )  =  ( x F y ) )
54eqeq1d 2146 . . . 4  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  =  D  <->  ( x F y )  =  D ) )
6 eqcom 2139 . . . 4  |-  ( ( x F y )  =  D  <->  D  =  ( x F y ) )
75, 6syl6bb 195 . . 3  |-  ( z  =  <. x ,  y
>.  ->  ( ( F `
 z )  =  D  <->  D  =  (
x F y ) ) )
87rexxp 4678 . 2  |-  ( E. z  e.  ( B  X.  C ) ( F `  z )  =  D  <->  E. x  e.  B  E. y  e.  C  D  =  ( x F y ) )
91, 8syl6bb 195 1  |-  ( ( F  Fn  A  /\  ( B  X.  C
)  C_  A )  ->  ( D  e.  ( F " ( B  X.  C ) )  <->  E. x  e.  B  E. y  e.  C  D  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415    C_ wss 3066   <.cop 3525    X. cxp 4532   "cima 4537    Fn wfn 5113   ` cfv 5118  (class class class)co 5767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126  df-ov 5770
This theorem is referenced by:  dfz2  9116  elq  9407
  Copyright terms: Public domain W3C validator