ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvconst2 Unicode version

Theorem fvconst2 5800
Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.)
Hypothesis
Ref Expression
fvconst2.1  |-  B  e. 
_V
Assertion
Ref Expression
fvconst2  |-  ( C  e.  A  ->  (
( A  X.  { B } ) `  C
)  =  B )

Proof of Theorem fvconst2
StepHypRef Expression
1 fvconst2.1 . 2  |-  B  e. 
_V
2 fvconst2g 5798 . 2  |-  ( ( B  e.  _V  /\  C  e.  A )  ->  ( ( A  X.  { B } ) `  C )  =  B )
31, 2mpan 424 1  |-  ( C  e.  A  ->  (
( A  X.  { B } ) `  C
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772   {csn 3633    X. cxp 4673   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279
This theorem is referenced by:  ovconst2  6098  mapsncnv  6782  0ct  7209  infnninfOLD  7227  exmidomni  7244  ser0f  10679  fser0const  10680  iserge0  11654  sum0  11699  isumz  11700  prodf1f  11854  fprodntrivap  11895  prod1dc  11897  0nninf  15941  nninfnfiinf  15960
  Copyright terms: Public domain W3C validator