ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvconst2 Unicode version

Theorem fvconst2 5823
Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.)
Hypothesis
Ref Expression
fvconst2.1  |-  B  e. 
_V
Assertion
Ref Expression
fvconst2  |-  ( C  e.  A  ->  (
( A  X.  { B } ) `  C
)  =  B )

Proof of Theorem fvconst2
StepHypRef Expression
1 fvconst2.1 . 2  |-  B  e. 
_V
2 fvconst2g 5821 . 2  |-  ( ( B  e.  _V  /\  C  e.  A )  ->  ( ( A  X.  { B } ) `  C )  =  B )
31, 2mpan 424 1  |-  ( C  e.  A  ->  (
( A  X.  { B } ) `  C
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776   {csn 3643    X. cxp 4691   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298
This theorem is referenced by:  ovconst2  6121  mapsncnv  6805  0ct  7235  infnninfOLD  7253  exmidomni  7270  ser0f  10716  fser0const  10717  iserge0  11769  sum0  11814  isumz  11815  prodf1f  11969  fprodntrivap  12010  prod1dc  12012  0nninf  16143  nninfnfiinf  16162
  Copyright terms: Public domain W3C validator