ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvconst2 Unicode version

Theorem fvconst2 5778
Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.)
Hypothesis
Ref Expression
fvconst2.1  |-  B  e. 
_V
Assertion
Ref Expression
fvconst2  |-  ( C  e.  A  ->  (
( A  X.  { B } ) `  C
)  =  B )

Proof of Theorem fvconst2
StepHypRef Expression
1 fvconst2.1 . 2  |-  B  e. 
_V
2 fvconst2g 5776 . 2  |-  ( ( B  e.  _V  /\  C  e.  A )  ->  ( ( A  X.  { B } ) `  C )  =  B )
31, 2mpan 424 1  |-  ( C  e.  A  ->  (
( A  X.  { B } ) `  C
)  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763   {csn 3622    X. cxp 4661   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266
This theorem is referenced by:  ovconst2  6075  mapsncnv  6754  0ct  7173  infnninfOLD  7191  exmidomni  7208  ser0f  10626  fser0const  10627  iserge0  11508  sum0  11553  isumz  11554  prodf1f  11708  fprodntrivap  11749  prod1dc  11751  0nninf  15648
  Copyright terms: Public domain W3C validator