| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovconst2 | GIF version | ||
| Description: The value of a constant operation. (Contributed by NM, 5-Nov-2006.) |
| Ref | Expression |
|---|---|
| oprvalconst2.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| ovconst2 | ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ov 5957 | . 2 ⊢ (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = (((𝐴 × 𝐵) × {𝐶})‘〈𝑅, 𝑆〉) | |
| 2 | opelxpi 4712 | . . 3 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → 〈𝑅, 𝑆〉 ∈ (𝐴 × 𝐵)) | |
| 3 | oprvalconst2.1 | . . . 4 ⊢ 𝐶 ∈ V | |
| 4 | 3 | fvconst2 5810 | . . 3 ⊢ (〈𝑅, 𝑆〉 ∈ (𝐴 × 𝐵) → (((𝐴 × 𝐵) × {𝐶})‘〈𝑅, 𝑆〉) = 𝐶) |
| 5 | 2, 4 | syl 14 | . 2 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (((𝐴 × 𝐵) × {𝐶})‘〈𝑅, 𝑆〉) = 𝐶) |
| 6 | 1, 5 | eqtrid 2251 | 1 ⊢ ((𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐵) → (𝑅((𝐴 × 𝐵) × {𝐶})𝑆) = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 Vcvv 2773 {csn 3635 〈cop 3638 × cxp 4678 ‘cfv 5277 (class class class)co 5954 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3001 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-fv 5285 df-ov 5957 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |