| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovclg | Unicode version | ||
| Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.) |
| Ref | Expression |
|---|---|
| caovclg.1 |
|
| Ref | Expression |
|---|---|
| caovclg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovclg.1 |
. . 3
| |
| 2 | 1 | ralrimivva 2612 |
. 2
|
| 3 | oveq1 6008 |
. . . 4
| |
| 4 | 3 | eleq1d 2298 |
. . 3
|
| 5 | oveq2 6009 |
. . . 4
| |
| 6 | 5 | eleq1d 2298 |
. . 3
|
| 7 | 4, 6 | rspc2v 2920 |
. 2
|
| 8 | 2, 7 | mpan9 281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 |
| This theorem is referenced by: caovcld 6159 caovcl 6160 caovlem2d 6198 frec2uzrdg 10631 frecuzrdgsuc 10636 iseqovex 10680 seq3val 10682 seqf 10686 seq3caopr 10717 seqcaoprg 10718 ercpbl 13364 grpinva 13419 imasmnd2 13485 imasgrp2 13647 imasrng 13919 imasring 14027 qusrhm 14492 qusmul2 14493 plymullem 15424 |
| Copyright terms: Public domain | W3C validator |