| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovclg | Unicode version | ||
| Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.) |
| Ref | Expression |
|---|---|
| caovclg.1 |
|
| Ref | Expression |
|---|---|
| caovclg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovclg.1 |
. . 3
| |
| 2 | 1 | ralrimivva 2588 |
. 2
|
| 3 | oveq1 5953 |
. . . 4
| |
| 4 | 3 | eleq1d 2274 |
. . 3
|
| 5 | oveq2 5954 |
. . . 4
| |
| 6 | 5 | eleq1d 2274 |
. . 3
|
| 7 | 4, 6 | rspc2v 2890 |
. 2
|
| 8 | 2, 7 | mpan9 281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 |
| This theorem is referenced by: caovcld 6102 caovcl 6103 caovlem2d 6141 frec2uzrdg 10556 frecuzrdgsuc 10561 iseqovex 10605 seq3val 10607 seqf 10611 seq3caopr 10642 seqcaoprg 10643 ercpbl 13196 grpinva 13251 imasmnd2 13317 imasgrp2 13479 imasrng 13751 imasring 13859 qusrhm 14323 qusmul2 14324 plymullem 15255 |
| Copyright terms: Public domain | W3C validator |