ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovclg Unicode version

Theorem caovclg 6080
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovclg.1  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x F y )  e.  E )
Assertion
Ref Expression
caovclg  |-  ( (
ph  /\  ( A  e.  C  /\  B  e.  D ) )  -> 
( A F B )  e.  E )
Distinct variable groups:    x, y, A   
y, B    x, C, y    x, D, y    x, E, y    ph, x, y   
x, F, y
Allowed substitution hint:    B( x)

Proof of Theorem caovclg
StepHypRef Expression
1 caovclg.1 . . 3  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x F y )  e.  E )
21ralrimivva 2579 . 2  |-  ( ph  ->  A. x  e.  C  A. y  e.  D  ( x F y )  e.  E )
3 oveq1 5932 . . . 4  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
43eleq1d 2265 . . 3  |-  ( x  =  A  ->  (
( x F y )  e.  E  <->  ( A F y )  e.  E ) )
5 oveq2 5933 . . . 4  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
65eleq1d 2265 . . 3  |-  ( y  =  B  ->  (
( A F y )  e.  E  <->  ( A F B )  e.  E
) )
74, 6rspc2v 2881 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ( x F y )  e.  E  ->  ( A F B )  e.  E ) )
82, 7mpan9 281 1  |-  ( (
ph  /\  ( A  e.  C  /\  B  e.  D ) )  -> 
( A F B )  e.  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  caovcld  6081  caovcl  6082  caovlem2d  6120  frec2uzrdg  10518  frecuzrdgsuc  10523  iseqovex  10567  seq3val  10569  seqf  10573  seq3caopr  10604  seqcaoprg  10605  ercpbl  13033  grpinva  13088  imasmnd2  13154  imasgrp2  13316  imasrng  13588  imasring  13696  qusrhm  14160  qusmul2  14161  plymullem  15070
  Copyright terms: Public domain W3C validator