| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovclg | Unicode version | ||
| Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.) |
| Ref | Expression |
|---|---|
| caovclg.1 |
|
| Ref | Expression |
|---|---|
| caovclg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovclg.1 |
. . 3
| |
| 2 | 1 | ralrimivva 2579 |
. 2
|
| 3 | oveq1 5929 |
. . . 4
| |
| 4 | 3 | eleq1d 2265 |
. . 3
|
| 5 | oveq2 5930 |
. . . 4
| |
| 6 | 5 | eleq1d 2265 |
. . 3
|
| 7 | 4, 6 | rspc2v 2881 |
. 2
|
| 8 | 2, 7 | mpan9 281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 |
| This theorem is referenced by: caovcld 6077 caovcl 6078 caovlem2d 6116 frec2uzrdg 10501 frecuzrdgsuc 10506 iseqovex 10550 seq3val 10552 seqf 10556 seq3caopr 10587 seqcaoprg 10588 ercpbl 12974 grpinva 13029 imasgrp2 13240 imasrng 13512 imasring 13620 qusrhm 14084 qusmul2 14085 plymullem 14986 |
| Copyright terms: Public domain | W3C validator |