ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovclg Unicode version

Theorem caovclg 6076
Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.)
Hypothesis
Ref Expression
caovclg.1  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x F y )  e.  E )
Assertion
Ref Expression
caovclg  |-  ( (
ph  /\  ( A  e.  C  /\  B  e.  D ) )  -> 
( A F B )  e.  E )
Distinct variable groups:    x, y, A   
y, B    x, C, y    x, D, y    x, E, y    ph, x, y   
x, F, y
Allowed substitution hint:    B( x)

Proof of Theorem caovclg
StepHypRef Expression
1 caovclg.1 . . 3  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x F y )  e.  E )
21ralrimivva 2579 . 2  |-  ( ph  ->  A. x  e.  C  A. y  e.  D  ( x F y )  e.  E )
3 oveq1 5929 . . . 4  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
43eleq1d 2265 . . 3  |-  ( x  =  A  ->  (
( x F y )  e.  E  <->  ( A F y )  e.  E ) )
5 oveq2 5930 . . . 4  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
65eleq1d 2265 . . 3  |-  ( y  =  B  ->  (
( A F y )  e.  E  <->  ( A F B )  e.  E
) )
74, 6rspc2v 2881 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( A. x  e.  C  A. y  e.  D  ( x F y )  e.  E  ->  ( A F B )  e.  E ) )
82, 7mpan9 281 1  |-  ( (
ph  /\  ( A  e.  C  /\  B  e.  D ) )  -> 
( A F B )  e.  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   A.wral 2475  (class class class)co 5922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  caovcld  6077  caovcl  6078  caovlem2d  6116  frec2uzrdg  10501  frecuzrdgsuc  10506  iseqovex  10550  seq3val  10552  seqf  10556  seq3caopr  10587  seqcaoprg  10588  ercpbl  12974  grpinva  13029  imasgrp2  13240  imasrng  13512  imasring  13620  qusrhm  14084  qusmul2  14085  plymullem  14986
  Copyright terms: Public domain W3C validator