| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > caovclg | Unicode version | ||
| Description: Convert an operation closure law to class notation. (Contributed by Mario Carneiro, 26-May-2014.) |
| Ref | Expression |
|---|---|
| caovclg.1 |
|
| Ref | Expression |
|---|---|
| caovclg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovclg.1 |
. . 3
| |
| 2 | 1 | ralrimivva 2579 |
. 2
|
| 3 | oveq1 5932 |
. . . 4
| |
| 4 | 3 | eleq1d 2265 |
. . 3
|
| 5 | oveq2 5933 |
. . . 4
| |
| 6 | 5 | eleq1d 2265 |
. . 3
|
| 7 | 4, 6 | rspc2v 2881 |
. 2
|
| 8 | 2, 7 | mpan9 281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: caovcld 6081 caovcl 6082 caovlem2d 6120 frec2uzrdg 10520 frecuzrdgsuc 10525 iseqovex 10569 seq3val 10571 seqf 10575 seq3caopr 10606 seqcaoprg 10607 ercpbl 13035 grpinva 13090 imasmnd2 13156 imasgrp2 13318 imasrng 13590 imasring 13698 qusrhm 14162 qusmul2 14163 plymullem 15094 |
| Copyright terms: Public domain | W3C validator |