ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodv Unicode version

Theorem ovmpodv 6055
Description: Alternate deduction version of ovmpo 6058, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodf.1  |-  ( ph  ->  A  e.  C )
ovmpodf.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  D )
ovmpodf.3  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  e.  V )
ovmpodf.4  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  R  ->  ps ) )
Assertion
Ref Expression
ovmpodv  |-  ( ph  ->  ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
)
Distinct variable groups:    x, y, A   
y, B    ph, x, y   
x, F, y    ps, x, y
Allowed substitution hints:    B( x)    C( x, y)    D( x, y)    R( x, y)    V( x, y)

Proof of Theorem ovmpodv
StepHypRef Expression
1 ovmpodf.1 . 2  |-  ( ph  ->  A  e.  C )
2 ovmpodf.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  D )
3 ovmpodf.3 . 2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  e.  V )
4 ovmpodf.4 . 2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  R  ->  ps ) )
5 nfcv 2339 . 2  |-  F/_ x F
6 nfv 1542 . 2  |-  F/ x ps
7 nfcv 2339 . 2  |-  F/_ y F
8 nfv 1542 . 2  |-  F/ y ps
91, 2, 3, 4, 5, 6, 7, 8ovmpodf 6054 1  |-  ( ph  ->  ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5922    e. cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator