ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodv Unicode version

Theorem ovmpodv 5943
Description: Alternate deduction version of ovmpo 5946, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
Hypotheses
Ref Expression
ovmpodf.1  |-  ( ph  ->  A  e.  C )
ovmpodf.2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  D )
ovmpodf.3  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  e.  V )
ovmpodf.4  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  R  ->  ps ) )
Assertion
Ref Expression
ovmpodv  |-  ( ph  ->  ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
)
Distinct variable groups:    x, y, A   
y, B    ph, x, y   
x, F, y    ps, x, y
Allowed substitution hints:    B( x)    C( x, y)    D( x, y)    R( x, y)    V( x, y)

Proof of Theorem ovmpodv
StepHypRef Expression
1 ovmpodf.1 . 2  |-  ( ph  ->  A  e.  C )
2 ovmpodf.2 . 2  |-  ( (
ph  /\  x  =  A )  ->  B  e.  D )
3 ovmpodf.3 . 2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  e.  V )
4 ovmpodf.4 . 2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  -> 
( ( A F B )  =  R  ->  ps ) )
5 nfcv 2296 . 2  |-  F/_ x F
6 nfv 1505 . 2  |-  F/ x ps
7 nfcv 2296 . 2  |-  F/_ y F
8 nfv 1505 . 2  |-  F/ y ps
91, 2, 3, 4, 5, 6, 7, 8ovmpodf 5942 1  |-  ( ph  ->  ( F  =  ( x  e.  C , 
y  e.  D  |->  R )  ->  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 2125  (class class class)co 5814    e. cmpo 5816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-setind 4490
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-ov 5817  df-oprab 5818  df-mpo 5819
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator