ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftlem Unicode version

Theorem qliftlem 6631
Description:  F, a function lift, is a subset of  R  X.  S. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
Assertion
Ref Expression
qliftlem  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
Distinct variable groups:    ph, x    x, R    x, X    x, Y
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem qliftlem
StepHypRef Expression
1 qlift.3 . . 3  |-  ( ph  ->  R  Er  X )
2 qlift.4 . . 3  |-  ( ph  ->  X  e.  _V )
3 erex 6577 . . 3  |-  ( R  Er  X  ->  ( X  e.  _V  ->  R  e.  _V ) )
41, 2, 3sylc 62 . 2  |-  ( ph  ->  R  e.  _V )
5 ecelqsg 6606 . 2  |-  ( ( R  e.  _V  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R
) )
64, 5sylan 283 1  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752   <.cop 3610    |-> cmpt 4079   ran crn 4642    Er wer 6550   [cec 6551   /.cqs 6552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-rel 4648  df-cnv 4649  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-er 6553  df-ec 6555  df-qs 6559
This theorem is referenced by:  qliftrel  6632  qliftel  6633  qliftel1  6634  qliftfun  6635  qliftf  6638  qliftval  6639
  Copyright terms: Public domain W3C validator