ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftlem Unicode version

Theorem qliftlem 6700
Description:  F, a function lift, is a subset of  R  X.  S. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1  |-  F  =  ran  ( x  e.  X  |->  <. [ x ] R ,  A >. )
qlift.2  |-  ( (
ph  /\  x  e.  X )  ->  A  e.  Y )
qlift.3  |-  ( ph  ->  R  Er  X )
qlift.4  |-  ( ph  ->  X  e.  _V )
Assertion
Ref Expression
qliftlem  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
Distinct variable groups:    ph, x    x, R    x, X    x, Y
Allowed substitution hints:    A( x)    F( x)

Proof of Theorem qliftlem
StepHypRef Expression
1 qlift.3 . . 3  |-  ( ph  ->  R  Er  X )
2 qlift.4 . . 3  |-  ( ph  ->  X  e.  _V )
3 erex 6644 . . 3  |-  ( R  Er  X  ->  ( X  e.  _V  ->  R  e.  _V ) )
41, 2, 3sylc 62 . 2  |-  ( ph  ->  R  e.  _V )
5 ecelqsg 6675 . 2  |-  ( ( R  e.  _V  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R
) )
64, 5sylan 283 1  |-  ( (
ph  /\  x  e.  X )  ->  [ x ] R  e.  ( X /. R ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   <.cop 3636    |-> cmpt 4105   ran crn 4676    Er wer 6617   [cec 6618   /.cqs 6619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-rel 4682  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-er 6620  df-ec 6622  df-qs 6626
This theorem is referenced by:  qliftrel  6701  qliftel  6702  qliftel1  6703  qliftfun  6704  qliftf  6707  qliftval  6708
  Copyright terms: Public domain W3C validator