ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccen Unicode version

Theorem iccen 10202
Description: Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
iccen  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
0 [,] 1 ) 
~~  ( A [,] B ) )

Proof of Theorem iccen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 8133 . . 3  |-  RR  e.  _V
2 unitssre 10201 . . 3  |-  ( 0 [,] 1 )  C_  RR
31, 2ssexi 4222 . 2  |-  ( 0 [,] 1 )  e. 
_V
4 iccssre 10151 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
5 ssexg 4223 . . . 4  |-  ( ( ( A [,] B
)  C_  RR  /\  RR  e.  _V )  ->  ( A [,] B )  e. 
_V )
64, 1, 5sylancl 413 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  e.  _V )
763adant3 1041 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A [,] B )  e. 
_V )
8 eqid 2229 . . . 4  |-  ( x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A ) ) )  =  ( x  e.  ( 0 [,] 1
)  |->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) ) )
98iccf1o 10200 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B )  /\  `' ( x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A ) ) )  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) ) )
109simpld 112 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B
)  +  ( ( 1  -  x )  x.  A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) )
11 f1oen2g 6906 . 2  |-  ( ( ( 0 [,] 1
)  e.  _V  /\  ( A [,] B )  e.  _V  /\  (
x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B
)  +  ( ( 1  -  x )  x.  A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) )  ->  ( 0 [,] 1 )  ~~  ( A [,] B ) )
123, 7, 10, 11mp3an2i 1376 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
0 [,] 1 ) 
~~  ( A [,] B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   class class class wbr 4083    |-> cmpt 4145   `'ccnv 4718   -1-1-onto->wf1o 5317  (class class class)co 6001    ~~ cen 6885   RRcr 7998   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004    < clt 8181    - cmin 8317    / cdiv 8819   [,]cicc 10087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-en 6888  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-rp 9850  df-icc 10091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator