ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccen Unicode version

Theorem iccen 10008
Description: Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
iccen  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
0 [,] 1 ) 
~~  ( A [,] B ) )

Proof of Theorem iccen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 7947 . . 3  |-  RR  e.  _V
2 unitssre 10007 . . 3  |-  ( 0 [,] 1 )  C_  RR
31, 2ssexi 4143 . 2  |-  ( 0 [,] 1 )  e. 
_V
4 iccssre 9957 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
5 ssexg 4144 . . . 4  |-  ( ( ( A [,] B
)  C_  RR  /\  RR  e.  _V )  ->  ( A [,] B )  e. 
_V )
64, 1, 5sylancl 413 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  e.  _V )
763adant3 1017 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A [,] B )  e. 
_V )
8 eqid 2177 . . . 4  |-  ( x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A ) ) )  =  ( x  e.  ( 0 [,] 1
)  |->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) ) )
98iccf1o 10006 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B )  /\  `' ( x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A ) ) )  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) ) )
109simpld 112 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B
)  +  ( ( 1  -  x )  x.  A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) )
11 f1oen2g 6757 . 2  |-  ( ( ( 0 [,] 1
)  e.  _V  /\  ( A [,] B )  e.  _V  /\  (
x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B
)  +  ( ( 1  -  x )  x.  A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) )  ->  ( 0 [,] 1 )  ~~  ( A [,] B ) )
123, 7, 10, 11mp3an2i 1342 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
0 [,] 1 ) 
~~  ( A [,] B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2739    C_ wss 3131   class class class wbr 4005    |-> cmpt 4066   `'ccnv 4627   -1-1-onto->wf1o 5217  (class class class)co 5877    ~~ cen 6740   RRcr 7812   0cc0 7813   1c1 7814    + caddc 7816    x. cmul 7818    < clt 7994    - cmin 8130    / cdiv 8631   [,]cicc 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-en 6743  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-rp 9656  df-icc 9897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator