ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iccen Unicode version

Theorem iccen 9888
Description: Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 8-Sep-2015.)
Assertion
Ref Expression
iccen  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
0 [,] 1 ) 
~~  ( A [,] B ) )

Proof of Theorem iccen
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reex 7845 . . 3  |-  RR  e.  _V
2 unitssre 9887 . . 3  |-  ( 0 [,] 1 )  C_  RR
31, 2ssexi 4098 . 2  |-  ( 0 [,] 1 )  e. 
_V
4 iccssre 9837 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  C_  RR )
5 ssexg 4099 . . . 4  |-  ( ( ( A [,] B
)  C_  RR  /\  RR  e.  _V )  ->  ( A [,] B )  e. 
_V )
64, 1, 5sylancl 410 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A [,] B
)  e.  _V )
763adant3 1002 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  ( A [,] B )  e. 
_V )
8 eqid 2154 . . . 4  |-  ( x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A ) ) )  =  ( x  e.  ( 0 [,] 1
)  |->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A
) ) )
98iccf1o 9886 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
( x  e.  ( 0 [,] 1 ) 
|->  ( ( x  x.  B )  +  ( ( 1  -  x
)  x.  A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B )  /\  `' ( x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A ) ) )  =  ( y  e.  ( A [,] B
)  |->  ( ( y  -  A )  / 
( B  -  A
) ) ) ) )
109simpld 111 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B
)  +  ( ( 1  -  x )  x.  A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) )
11 f1oen2g 6689 . 2  |-  ( ( ( 0 [,] 1
)  e.  _V  /\  ( A [,] B )  e.  _V  /\  (
x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B
)  +  ( ( 1  -  x )  x.  A ) ) ) : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) )  ->  ( 0 [,] 1 )  ~~  ( A [,] B ) )
123, 7, 10, 11mp3an2i 1321 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  (
0 [,] 1 ) 
~~  ( A [,] B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 2125   _Vcvv 2709    C_ wss 3098   class class class wbr 3961    |-> cmpt 4021   `'ccnv 4578   -1-1-onto->wf1o 5162  (class class class)co 5814    ~~ cen 6672   RRcr 7710   0cc0 7711   1c1 7712    + caddc 7714    x. cmul 7716    < clt 7891    - cmin 8025    / cdiv 8524   [,]cicc 9773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-po 4251  df-iso 4252  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-en 6675  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-rp 9539  df-icc 9777
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator