ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xrex Unicode version

Theorem xrex 10048
Description: The set of extended reals exists. (Contributed by NM, 24-Dec-2006.)
Assertion
Ref Expression
xrex  |-  RR*  e.  _V

Proof of Theorem xrex
StepHypRef Expression
1 df-xr 8181 . 2  |-  RR*  =  ( RR  u.  { +oo , -oo } )
2 reex 8129 . . 3  |-  RR  e.  _V
3 pnfxr 8195 . . . 4  |- +oo  e.  RR*
4 mnfxr 8199 . . . 4  |- -oo  e.  RR*
5 prexg 4294 . . . 4  |-  ( ( +oo  e.  RR*  /\ -oo  e.  RR* )  ->  { +oo , -oo }  e.  _V )
63, 4, 5mp2an 426 . . 3  |-  { +oo , -oo }  e.  _V
72, 6unex 4531 . 2  |-  ( RR  u.  { +oo , -oo } )  e.  _V
81, 7eqeltri 2302 1  |-  RR*  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799    u. cun 3195   {cpr 3667   RRcr 7994   +oocpnf 8174   -oocmnf 8175   RR*cxr 8176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3888  df-pnf 8179  df-mnf 8180  df-xr 8181
This theorem is referenced by:  ixxval  10088  ixxf  10090  ixxex  10091  blfn  14509  cnfldstr  14516  cnfldle  14525  znval  14594  znle  14595  znbaslemnn  14597  ispsmet  14991  isxmet  15013  xmetunirn  15026  blfvalps  15053  blex  15055
  Copyright terms: Public domain W3C validator