Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > recn | Unicode version |
Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
Ref | Expression |
---|---|
recn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7807 | . 2 | |
2 | 1 | sseli 3124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cc 7713 cr 7714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 ax-resscn 7807 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: mulid1 7858 recnd 7889 pnfnre 7902 mnfnre 7903 cnegexlem1 8033 cnegexlem2 8034 cnegexlem3 8035 cnegex 8036 renegcl 8119 resubcl 8122 negf1o 8240 mul02lem2 8246 ltaddneg 8282 ltaddnegr 8283 ltaddsub2 8295 leaddsub2 8297 leltadd 8305 ltaddpos 8310 ltaddpos2 8311 posdif 8313 lenegcon1 8324 lenegcon2 8325 addge01 8330 addge02 8331 leaddle0 8335 mullt0 8338 recexre 8436 msqge0 8474 mulge0 8477 aprcl 8504 recexap 8510 ltm1 8700 prodgt02 8707 prodge02 8709 ltmul2 8710 lemul2 8711 lemul2a 8713 ltmulgt12 8719 lemulge12 8721 gt0div 8724 ge0div 8725 ltmuldiv2 8729 ltdivmul 8730 ltdivmul2 8732 ledivmul2 8734 lemuldiv2 8736 negiso 8809 cju 8815 nnge1 8839 halfpos 9047 lt2halves 9051 addltmul 9052 avgle1 9056 avgle2 9057 div4p1lem1div2 9069 nnrecl 9071 elznn0 9165 elznn 9166 nzadd 9202 zmulcl 9203 elz2 9218 gtndiv 9242 zeo 9252 supminfex 9491 eqreznegel 9505 negm 9506 irradd 9537 irrmul 9538 divlt1lt 9613 divle1le 9614 xnegneg 9719 rexsub 9739 xnegid 9745 xaddcom 9747 xaddid1 9748 xnegdi 9754 xaddass 9755 xleaddadd 9773 divelunit 9888 fzonmapblen 10068 expgt1 10439 mulexpzap 10441 leexp1a 10456 expubnd 10458 sqgt0ap 10469 lt2sq 10474 le2sq 10475 sqge0 10477 sumsqeq0 10479 bernneq 10520 bernneq2 10521 crre 10739 crim 10740 reim0 10743 mulreap 10746 rere 10747 remul2 10755 redivap 10756 immul2 10762 imdivap 10763 cjre 10764 cjreim 10785 rennim 10884 sqrt0rlem 10885 resqrexlemover 10892 absreimsq 10949 absreim 10950 absnid 10955 leabs 10956 absre 10959 absresq 10960 sqabs 10964 ltabs 10969 absdiflt 10974 absdifle 10975 lenegsq 10977 abssuble0 10985 dfabsmax 11099 max0addsup 11101 negfi 11109 minclpr 11118 reefcl 11547 efgt0 11563 reeftlcl 11568 resinval 11594 recosval 11595 resin4p 11597 recos4p 11598 resincl 11599 recoscl 11600 retanclap 11601 efieq 11614 sinbnd 11631 cosbnd 11632 absefi 11647 odd2np1 11745 infssuzex 11817 remetdval 12899 bl2ioo 12902 ioo2bl 12903 sincosq1sgn 13107 sincosq2sgn 13108 sincosq3sgn 13109 sincosq4sgn 13110 sinq12gt0 13111 relogoprlem 13149 logcxp 13178 rpcxpcl 13184 cxpcom 13217 rprelogbdiv 13234 triap 13563 trirec0 13578 |
Copyright terms: Public domain | W3C validator |