| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recn | Unicode version | ||
| Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| Ref | Expression |
|---|---|
| recn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8052 |
. 2
| |
| 2 | 1 | sseli 3197 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: mulrid 8104 recnd 8136 pnfnre 8149 mnfnre 8150 cnegexlem1 8282 cnegexlem2 8283 cnegexlem3 8284 cnegex 8285 renegcl 8368 resubcl 8371 negf1o 8489 mul02lem2 8495 ltaddneg 8532 ltaddnegr 8533 ltaddsub2 8545 leaddsub2 8547 leltadd 8555 ltaddpos 8560 ltaddpos2 8561 posdif 8563 lenegcon1 8574 lenegcon2 8575 addge01 8580 addge02 8581 leaddle0 8585 mullt0 8588 recexre 8686 msqge0 8724 mulge0 8727 aprcl 8754 recexap 8761 rerecapb 8951 ltm1 8954 prodgt02 8961 prodge02 8963 ltmul2 8964 lemul2 8965 lemul2a 8967 ltmulgt12 8973 lemulge12 8975 gt0div 8978 ge0div 8979 ltmuldiv2 8983 ltdivmul 8984 ltdivmul2 8986 ledivmul2 8988 lemuldiv2 8990 negiso 9063 cju 9069 nnge1 9094 halfpos 9303 lt2halves 9308 addltmul 9309 avgle1 9313 avgle2 9314 div4p1lem1div2 9326 nnrecl 9328 elznn0 9422 elznn 9423 nzadd 9460 zmulcl 9461 difgtsumgt 9477 elz2 9479 gtndiv 9503 zeo 9513 supminfex 9753 eqreznegel 9770 negm 9771 irradd 9802 irrmul 9803 divlt1lt 9881 divle1le 9882 xnegneg 9990 rexsub 10010 xnegid 10016 xaddcom 10018 xaddid1 10019 xnegdi 10025 xaddass 10026 xleaddadd 10044 divelunit 10159 fzonmapblen 10348 infssuzex 10413 expgt1 10759 mulexpzap 10761 leexp1a 10776 expubnd 10778 sqgt0ap 10790 lt2sq 10795 le2sq 10796 sqge0 10798 sumsqeq0 10800 bernneq 10842 bernneq2 10843 nn0ltexp2 10891 swrdccatin2 11220 swrdccat3blem 11230 crre 11283 crim 11284 reim0 11287 mulreap 11290 rere 11291 remul2 11299 redivap 11300 immul2 11306 imdivap 11307 cjre 11308 cjreim 11329 rennim 11428 sqrt0rlem 11429 resqrexlemover 11436 absreimsq 11493 absreim 11494 absnid 11499 leabs 11500 absre 11503 absresq 11504 sqabs 11508 ltabs 11513 absdiflt 11518 absdifle 11519 lenegsq 11521 abssuble0 11529 dfabsmax 11643 max0addsup 11645 negfi 11654 minclpr 11663 reefcl 12094 efgt0 12110 reeftlcl 12115 resinval 12141 recosval 12142 resin4p 12144 recos4p 12145 resincl 12146 recoscl 12147 retanclap 12148 efieq 12161 sinbnd 12178 cosbnd 12179 absefi 12195 odd2np1 12299 remetdval 15134 bl2ioo 15137 ioo2bl 15138 hoverb 15235 plyreres 15351 sincosq1sgn 15413 sincosq2sgn 15414 sincosq3sgn 15415 sincosq4sgn 15416 sinq12gt0 15417 relogoprlem 15455 logcxp 15484 rpcxpcl 15490 cxpcom 15525 rprelogbdiv 15544 gausslemma2dlem1a 15650 triap 16170 trirec0 16185 |
| Copyright terms: Public domain | W3C validator |