| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recn | Unicode version | ||
| Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| Ref | Expression |
|---|---|
| recn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8087 |
. 2
| |
| 2 | 1 | sseli 3220 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-resscn 8087 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: mulrid 8139 recnd 8171 pnfnre 8184 mnfnre 8185 cnegexlem1 8317 cnegexlem2 8318 cnegexlem3 8319 cnegex 8320 renegcl 8403 resubcl 8406 negf1o 8524 mul02lem2 8530 ltaddneg 8567 ltaddnegr 8568 ltaddsub2 8580 leaddsub2 8582 leltadd 8590 ltaddpos 8595 ltaddpos2 8596 posdif 8598 lenegcon1 8609 lenegcon2 8610 addge01 8615 addge02 8616 leaddle0 8620 mullt0 8623 recexre 8721 msqge0 8759 mulge0 8762 aprcl 8789 recexap 8796 rerecapb 8986 ltm1 8989 prodgt02 8996 prodge02 8998 ltmul2 8999 lemul2 9000 lemul2a 9002 ltmulgt12 9008 lemulge12 9010 gt0div 9013 ge0div 9014 ltmuldiv2 9018 ltdivmul 9019 ltdivmul2 9021 ledivmul2 9023 lemuldiv2 9025 negiso 9098 cju 9104 nnge1 9129 halfpos 9338 lt2halves 9343 addltmul 9344 avgle1 9348 avgle2 9349 div4p1lem1div2 9361 nnrecl 9363 elznn0 9457 elznn 9458 nzadd 9495 zmulcl 9496 difgtsumgt 9512 elz2 9514 gtndiv 9538 zeo 9548 supminfex 9788 eqreznegel 9805 negm 9806 irradd 9837 irrmul 9838 divlt1lt 9916 divle1le 9917 xnegneg 10025 rexsub 10045 xnegid 10051 xaddcom 10053 xaddid1 10054 xnegdi 10060 xaddass 10061 xleaddadd 10079 divelunit 10194 fzonmapblen 10383 infssuzex 10448 expgt1 10794 mulexpzap 10796 leexp1a 10811 expubnd 10813 sqgt0ap 10825 lt2sq 10830 le2sq 10831 sqge0 10833 sumsqeq0 10835 bernneq 10877 bernneq2 10878 nn0ltexp2 10926 swrdccatin2 11256 swrdccat3blem 11266 crre 11363 crim 11364 reim0 11367 mulreap 11370 rere 11371 remul2 11379 redivap 11380 immul2 11386 imdivap 11387 cjre 11388 cjreim 11409 rennim 11508 sqrt0rlem 11509 resqrexlemover 11516 absreimsq 11573 absreim 11574 absnid 11579 leabs 11580 absre 11583 absresq 11584 sqabs 11588 ltabs 11593 absdiflt 11598 absdifle 11599 lenegsq 11601 abssuble0 11609 dfabsmax 11723 max0addsup 11725 negfi 11734 minclpr 11743 reefcl 12174 efgt0 12190 reeftlcl 12195 resinval 12221 recosval 12222 resin4p 12224 recos4p 12225 resincl 12226 recoscl 12227 retanclap 12228 efieq 12241 sinbnd 12258 cosbnd 12259 absefi 12275 odd2np1 12379 remetdval 15215 bl2ioo 15218 ioo2bl 15219 hoverb 15316 plyreres 15432 sincosq1sgn 15494 sincosq2sgn 15495 sincosq3sgn 15496 sincosq4sgn 15497 sinq12gt0 15498 relogoprlem 15536 logcxp 15565 rpcxpcl 15571 cxpcom 15606 rprelogbdiv 15625 gausslemma2dlem1a 15731 triap 16356 trirec0 16371 |
| Copyright terms: Public domain | W3C validator |