![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recn | Unicode version |
Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
Ref | Expression |
---|---|
recn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7964 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3175 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7964 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: mulrid 8016 recnd 8048 pnfnre 8061 mnfnre 8062 cnegexlem1 8194 cnegexlem2 8195 cnegexlem3 8196 cnegex 8197 renegcl 8280 resubcl 8283 negf1o 8401 mul02lem2 8407 ltaddneg 8443 ltaddnegr 8444 ltaddsub2 8456 leaddsub2 8458 leltadd 8466 ltaddpos 8471 ltaddpos2 8472 posdif 8474 lenegcon1 8485 lenegcon2 8486 addge01 8491 addge02 8492 leaddle0 8496 mullt0 8499 recexre 8597 msqge0 8635 mulge0 8638 aprcl 8665 recexap 8672 rerecapb 8862 ltm1 8865 prodgt02 8872 prodge02 8874 ltmul2 8875 lemul2 8876 lemul2a 8878 ltmulgt12 8884 lemulge12 8886 gt0div 8889 ge0div 8890 ltmuldiv2 8894 ltdivmul 8895 ltdivmul2 8897 ledivmul2 8899 lemuldiv2 8901 negiso 8974 cju 8980 nnge1 9005 halfpos 9213 lt2halves 9218 addltmul 9219 avgle1 9223 avgle2 9224 div4p1lem1div2 9236 nnrecl 9238 elznn0 9332 elznn 9333 nzadd 9369 zmulcl 9370 difgtsumgt 9386 elz2 9388 gtndiv 9412 zeo 9422 supminfex 9662 eqreznegel 9679 negm 9680 irradd 9711 irrmul 9712 divlt1lt 9790 divle1le 9791 xnegneg 9899 rexsub 9919 xnegid 9925 xaddcom 9927 xaddid1 9928 xnegdi 9934 xaddass 9935 xleaddadd 9953 divelunit 10068 fzonmapblen 10254 expgt1 10648 mulexpzap 10650 leexp1a 10665 expubnd 10667 sqgt0ap 10679 lt2sq 10684 le2sq 10685 sqge0 10687 sumsqeq0 10689 bernneq 10731 bernneq2 10732 nn0ltexp2 10780 crre 11001 crim 11002 reim0 11005 mulreap 11008 rere 11009 remul2 11017 redivap 11018 immul2 11024 imdivap 11025 cjre 11026 cjreim 11047 rennim 11146 sqrt0rlem 11147 resqrexlemover 11154 absreimsq 11211 absreim 11212 absnid 11217 leabs 11218 absre 11221 absresq 11222 sqabs 11226 ltabs 11231 absdiflt 11236 absdifle 11237 lenegsq 11239 abssuble0 11247 dfabsmax 11361 max0addsup 11363 negfi 11371 minclpr 11380 reefcl 11811 efgt0 11827 reeftlcl 11832 resinval 11858 recosval 11859 resin4p 11861 recos4p 11862 resincl 11863 recoscl 11864 retanclap 11865 efieq 11878 sinbnd 11895 cosbnd 11896 absefi 11912 odd2np1 12014 infssuzex 12086 remetdval 14707 bl2ioo 14710 ioo2bl 14711 hoverb 14802 sincosq1sgn 14961 sincosq2sgn 14962 sincosq3sgn 14963 sincosq4sgn 14964 sinq12gt0 14965 relogoprlem 15003 logcxp 15032 rpcxpcl 15038 cxpcom 15071 rprelogbdiv 15089 gausslemma2dlem1a 15174 triap 15519 trirec0 15534 |
Copyright terms: Public domain | W3C validator |