| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recn | Unicode version | ||
| Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| Ref | Expression |
|---|---|
| recn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8017 |
. 2
| |
| 2 | 1 | sseli 3189 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: mulrid 8069 recnd 8101 pnfnre 8114 mnfnre 8115 cnegexlem1 8247 cnegexlem2 8248 cnegexlem3 8249 cnegex 8250 renegcl 8333 resubcl 8336 negf1o 8454 mul02lem2 8460 ltaddneg 8497 ltaddnegr 8498 ltaddsub2 8510 leaddsub2 8512 leltadd 8520 ltaddpos 8525 ltaddpos2 8526 posdif 8528 lenegcon1 8539 lenegcon2 8540 addge01 8545 addge02 8546 leaddle0 8550 mullt0 8553 recexre 8651 msqge0 8689 mulge0 8692 aprcl 8719 recexap 8726 rerecapb 8916 ltm1 8919 prodgt02 8926 prodge02 8928 ltmul2 8929 lemul2 8930 lemul2a 8932 ltmulgt12 8938 lemulge12 8940 gt0div 8943 ge0div 8944 ltmuldiv2 8948 ltdivmul 8949 ltdivmul2 8951 ledivmul2 8953 lemuldiv2 8955 negiso 9028 cju 9034 nnge1 9059 halfpos 9268 lt2halves 9273 addltmul 9274 avgle1 9278 avgle2 9279 div4p1lem1div2 9291 nnrecl 9293 elznn0 9387 elznn 9388 nzadd 9425 zmulcl 9426 difgtsumgt 9442 elz2 9444 gtndiv 9468 zeo 9478 supminfex 9718 eqreznegel 9735 negm 9736 irradd 9767 irrmul 9768 divlt1lt 9846 divle1le 9847 xnegneg 9955 rexsub 9975 xnegid 9981 xaddcom 9983 xaddid1 9984 xnegdi 9990 xaddass 9991 xleaddadd 10009 divelunit 10124 fzonmapblen 10311 infssuzex 10376 expgt1 10722 mulexpzap 10724 leexp1a 10739 expubnd 10741 sqgt0ap 10753 lt2sq 10758 le2sq 10759 sqge0 10761 sumsqeq0 10763 bernneq 10805 bernneq2 10806 nn0ltexp2 10854 crre 11168 crim 11169 reim0 11172 mulreap 11175 rere 11176 remul2 11184 redivap 11185 immul2 11191 imdivap 11192 cjre 11193 cjreim 11214 rennim 11313 sqrt0rlem 11314 resqrexlemover 11321 absreimsq 11378 absreim 11379 absnid 11384 leabs 11385 absre 11388 absresq 11389 sqabs 11393 ltabs 11398 absdiflt 11403 absdifle 11404 lenegsq 11406 abssuble0 11414 dfabsmax 11528 max0addsup 11530 negfi 11539 minclpr 11548 reefcl 11979 efgt0 11995 reeftlcl 12000 resinval 12026 recosval 12027 resin4p 12029 recos4p 12030 resincl 12031 recoscl 12032 retanclap 12033 efieq 12046 sinbnd 12063 cosbnd 12064 absefi 12080 odd2np1 12184 remetdval 15019 bl2ioo 15022 ioo2bl 15023 hoverb 15120 plyreres 15236 sincosq1sgn 15298 sincosq2sgn 15299 sincosq3sgn 15300 sincosq4sgn 15301 sinq12gt0 15302 relogoprlem 15340 logcxp 15369 rpcxpcl 15375 cxpcom 15410 rprelogbdiv 15429 gausslemma2dlem1a 15535 triap 15968 trirec0 15983 |
| Copyright terms: Public domain | W3C validator |