![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recn | Unicode version |
Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
Ref | Expression |
---|---|
recn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7500 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3024 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-11 1443 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-resscn 7500 |
This theorem depends on definitions: df-bi 116 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-in 3008 df-ss 3015 |
This theorem is referenced by: mulid1 7548 recnd 7579 pnfnre 7592 mnfnre 7593 cnegexlem1 7720 cnegexlem2 7721 cnegexlem3 7722 cnegex 7723 renegcl 7806 resubcl 7809 negf1o 7923 mul02lem2 7929 ltaddneg 7965 ltaddnegr 7966 ltaddsub2 7978 leaddsub2 7980 leltadd 7988 ltaddpos 7993 ltaddpos2 7994 posdif 7996 lenegcon1 8007 lenegcon2 8008 addge01 8013 addge02 8014 leaddle0 8018 mullt0 8021 recexre 8118 msqge0 8156 mulge0 8159 recexap 8185 ltm1 8370 prodgt02 8377 prodge02 8379 ltmul2 8380 lemul2 8381 lemul2a 8383 ltmulgt12 8389 lemulge12 8391 gt0div 8394 ge0div 8395 ltmuldiv2 8399 ltdivmul 8400 ltdivmul2 8402 ledivmul2 8404 lemuldiv2 8406 negiso 8479 cju 8484 nnge1 8508 halfpos 8710 lt2halves 8714 addltmul 8715 avgle1 8719 avgle2 8720 div4p1lem1div2 8732 nnrecl 8734 elznn0 8828 elznn 8829 nzadd 8865 zmulcl 8866 elz2 8881 gtndiv 8904 zeo 8914 supminfex 9148 eqreznegel 9162 negm 9163 irradd 9194 irrmul 9195 divlt1lt 9264 divle1le 9265 xnegneg 9358 divelunit 9482 fzonmapblen 9661 expgt1 10056 mulexpzap 10058 leexp1a 10073 expubnd 10075 sqgt0ap 10086 lt2sq 10091 le2sq 10092 sqge0 10094 sumsqeq0 10096 bernneq 10137 bernneq2 10138 crre 10354 crim 10355 reim0 10358 mulreap 10361 rere 10362 remul2 10370 redivap 10371 immul2 10377 imdivap 10378 cjre 10379 cjreim 10400 rennim 10498 sqrt0rlem 10499 resqrexlemover 10506 absreimsq 10563 absreim 10564 absnid 10569 leabs 10570 absre 10573 absresq 10574 sqabs 10578 ltabs 10583 absdiflt 10588 absdifle 10589 lenegsq 10591 abssuble0 10599 dfabsmax 10713 max0addsup 10715 negfi 10722 reefcl 11021 efgt0 11037 reeftlcl 11042 resinval 11069 recosval 11070 resin4p 11072 recos4p 11073 resincl 11074 recoscl 11075 retanclap 11076 efieq 11089 sinbnd 11106 cosbnd 11107 absefi 11121 odd2np1 11214 infssuzex 11286 |
Copyright terms: Public domain | W3C validator |