| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > recn | Unicode version | ||
| Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
| Ref | Expression |
|---|---|
| recn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-resscn 8016 |
. 2
| |
| 2 | 1 | sseli 3188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 ax-resscn 8016 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-in 3171 df-ss 3178 |
| This theorem is referenced by: mulrid 8068 recnd 8100 pnfnre 8113 mnfnre 8114 cnegexlem1 8246 cnegexlem2 8247 cnegexlem3 8248 cnegex 8249 renegcl 8332 resubcl 8335 negf1o 8453 mul02lem2 8459 ltaddneg 8496 ltaddnegr 8497 ltaddsub2 8509 leaddsub2 8511 leltadd 8519 ltaddpos 8524 ltaddpos2 8525 posdif 8527 lenegcon1 8538 lenegcon2 8539 addge01 8544 addge02 8545 leaddle0 8549 mullt0 8552 recexre 8650 msqge0 8688 mulge0 8691 aprcl 8718 recexap 8725 rerecapb 8915 ltm1 8918 prodgt02 8925 prodge02 8927 ltmul2 8928 lemul2 8929 lemul2a 8931 ltmulgt12 8937 lemulge12 8939 gt0div 8942 ge0div 8943 ltmuldiv2 8947 ltdivmul 8948 ltdivmul2 8950 ledivmul2 8952 lemuldiv2 8954 negiso 9027 cju 9033 nnge1 9058 halfpos 9267 lt2halves 9272 addltmul 9273 avgle1 9277 avgle2 9278 div4p1lem1div2 9290 nnrecl 9292 elznn0 9386 elznn 9387 nzadd 9424 zmulcl 9425 difgtsumgt 9441 elz2 9443 gtndiv 9467 zeo 9477 supminfex 9717 eqreznegel 9734 negm 9735 irradd 9766 irrmul 9767 divlt1lt 9845 divle1le 9846 xnegneg 9954 rexsub 9974 xnegid 9980 xaddcom 9982 xaddid1 9983 xnegdi 9989 xaddass 9990 xleaddadd 10008 divelunit 10123 fzonmapblen 10309 infssuzex 10374 expgt1 10720 mulexpzap 10722 leexp1a 10737 expubnd 10739 sqgt0ap 10751 lt2sq 10756 le2sq 10757 sqge0 10759 sumsqeq0 10761 bernneq 10803 bernneq2 10804 nn0ltexp2 10852 crre 11139 crim 11140 reim0 11143 mulreap 11146 rere 11147 remul2 11155 redivap 11156 immul2 11162 imdivap 11163 cjre 11164 cjreim 11185 rennim 11284 sqrt0rlem 11285 resqrexlemover 11292 absreimsq 11349 absreim 11350 absnid 11355 leabs 11356 absre 11359 absresq 11360 sqabs 11364 ltabs 11369 absdiflt 11374 absdifle 11375 lenegsq 11377 abssuble0 11385 dfabsmax 11499 max0addsup 11501 negfi 11510 minclpr 11519 reefcl 11950 efgt0 11966 reeftlcl 11971 resinval 11997 recosval 11998 resin4p 12000 recos4p 12001 resincl 12002 recoscl 12003 retanclap 12004 efieq 12017 sinbnd 12034 cosbnd 12035 absefi 12051 odd2np1 12155 remetdval 14990 bl2ioo 14993 ioo2bl 14994 hoverb 15091 plyreres 15207 sincosq1sgn 15269 sincosq2sgn 15270 sincosq3sgn 15271 sincosq4sgn 15272 sinq12gt0 15273 relogoprlem 15311 logcxp 15340 rpcxpcl 15346 cxpcom 15381 rprelogbdiv 15400 gausslemma2dlem1a 15506 triap 15930 trirec0 15945 |
| Copyright terms: Public domain | W3C validator |