![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > recn | Unicode version |
Description: A real number is a complex number. (Contributed by NM, 10-Aug-1999.) |
Ref | Expression |
---|---|
recn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-resscn 7966 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | sseli 3176 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: mulrid 8018 recnd 8050 pnfnre 8063 mnfnre 8064 cnegexlem1 8196 cnegexlem2 8197 cnegexlem3 8198 cnegex 8199 renegcl 8282 resubcl 8285 negf1o 8403 mul02lem2 8409 ltaddneg 8445 ltaddnegr 8446 ltaddsub2 8458 leaddsub2 8460 leltadd 8468 ltaddpos 8473 ltaddpos2 8474 posdif 8476 lenegcon1 8487 lenegcon2 8488 addge01 8493 addge02 8494 leaddle0 8498 mullt0 8501 recexre 8599 msqge0 8637 mulge0 8640 aprcl 8667 recexap 8674 rerecapb 8864 ltm1 8867 prodgt02 8874 prodge02 8876 ltmul2 8877 lemul2 8878 lemul2a 8880 ltmulgt12 8886 lemulge12 8888 gt0div 8891 ge0div 8892 ltmuldiv2 8896 ltdivmul 8897 ltdivmul2 8899 ledivmul2 8901 lemuldiv2 8903 negiso 8976 cju 8982 nnge1 9007 halfpos 9216 lt2halves 9221 addltmul 9222 avgle1 9226 avgle2 9227 div4p1lem1div2 9239 nnrecl 9241 elznn0 9335 elznn 9336 nzadd 9372 zmulcl 9373 difgtsumgt 9389 elz2 9391 gtndiv 9415 zeo 9425 supminfex 9665 eqreznegel 9682 negm 9683 irradd 9714 irrmul 9715 divlt1lt 9793 divle1le 9794 xnegneg 9902 rexsub 9922 xnegid 9928 xaddcom 9930 xaddid1 9931 xnegdi 9937 xaddass 9938 xleaddadd 9956 divelunit 10071 fzonmapblen 10257 expgt1 10651 mulexpzap 10653 leexp1a 10668 expubnd 10670 sqgt0ap 10682 lt2sq 10687 le2sq 10688 sqge0 10690 sumsqeq0 10692 bernneq 10734 bernneq2 10735 nn0ltexp2 10783 crre 11004 crim 11005 reim0 11008 mulreap 11011 rere 11012 remul2 11020 redivap 11021 immul2 11027 imdivap 11028 cjre 11029 cjreim 11050 rennim 11149 sqrt0rlem 11150 resqrexlemover 11157 absreimsq 11214 absreim 11215 absnid 11220 leabs 11221 absre 11224 absresq 11225 sqabs 11229 ltabs 11234 absdiflt 11239 absdifle 11240 lenegsq 11242 abssuble0 11250 dfabsmax 11364 max0addsup 11366 negfi 11374 minclpr 11383 reefcl 11814 efgt0 11830 reeftlcl 11835 resinval 11861 recosval 11862 resin4p 11864 recos4p 11865 resincl 11866 recoscl 11867 retanclap 11868 efieq 11881 sinbnd 11898 cosbnd 11899 absefi 11915 odd2np1 12017 infssuzex 12089 remetdval 14726 bl2ioo 14729 ioo2bl 14730 hoverb 14827 plyreres 14942 sincosq1sgn 15002 sincosq2sgn 15003 sincosq3sgn 15004 sincosq4sgn 15005 sinq12gt0 15006 relogoprlem 15044 logcxp 15073 rpcxpcl 15079 cxpcom 15112 rprelogbdiv 15130 gausslemma2dlem1a 15215 triap 15589 trirec0 15604 |
Copyright terms: Public domain | W3C validator |