ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psradd Unicode version

Theorem psradd 14637
Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrplusg.s  |-  S  =  ( I mPwSer  R )
psrplusg.b  |-  B  =  ( Base `  S
)
psrplusg.a  |-  .+  =  ( +g  `  R )
psrplusg.p  |-  .+b  =  ( +g  `  S )
psradd.x  |-  ( ph  ->  X  e.  B )
psradd.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
psradd  |-  ( ph  ->  ( X  .+b  Y
)  =  ( X  oF  .+  Y
) )

Proof of Theorem psradd
StepHypRef Expression
1 psradd.x . . . 4  |-  ( ph  ->  X  e.  B )
2 reldmpsr 14623 . . . . 5  |-  Rel  dom mPwSer
3 fnpsr 14625 . . . . . 6  |- mPwSer  Fn  ( _V  X.  _V )
4 fnrel 5418 . . . . . 6  |-  ( mPwSer  Fn  ( _V  X.  _V )  ->  Rel mPwSer  )
53, 4ax-mp 5 . . . . 5  |-  Rel mPwSer
6 psrplusg.s . . . . 5  |-  S  =  ( I mPwSer  R )
7 psrplusg.b . . . . 5  |-  B  =  ( Base `  S
)
82, 5, 6, 7relelbasov 13090 . . . 4  |-  ( X  e.  B  ->  (
I  e.  _V  /\  R  e.  _V )
)
9 psrplusg.a . . . . 5  |-  .+  =  ( +g  `  R )
10 psrplusg.p . . . . 5  |-  .+b  =  ( +g  `  S )
116, 7, 9, 10psrplusgg 14636 . . . 4  |-  ( ( I  e.  _V  /\  R  e.  _V )  -> 
.+b  =  (  oF  .+  |`  ( B  X.  B ) ) )
121, 8, 113syl 17 . . 3  |-  ( ph  -> 
.+b  =  (  oF  .+  |`  ( B  X.  B ) ) )
1312oveqd 6017 . 2  |-  ( ph  ->  ( X  .+b  Y
)  =  ( X (  oF  .+  |`  ( B  X.  B
) ) Y ) )
14 psradd.y . . 3  |-  ( ph  ->  Y  e.  B )
151, 14ofmresval 6228 . 2  |-  ( ph  ->  ( X (  oF  .+  |`  ( B  X.  B ) ) Y )  =  ( X  oF  .+  Y ) )
1613, 15eqtrd 2262 1  |-  ( ph  ->  ( X  .+b  Y
)  =  ( X  oF  .+  Y
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    X. cxp 4716    |` cres 4720   Rel wrel 4723    Fn wfn 5312   ` cfv 5317  (class class class)co 6000    oFcof 6214   Basecbs 13027   +g cplusg 13105   mPwSer cmps 14619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-of 6216  df-1st 6284  df-2nd 6285  df-map 6795  df-ixp 6844  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-struct 13029  df-ndx 13030  df-slot 13031  df-base 13033  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-tset 13124  df-rest 13269  df-topn 13270  df-topgen 13288  df-pt 13289  df-psr 14621
This theorem is referenced by:  psraddcl  14638  psr0lid  14640  psrlinv  14642  psrgrp  14643  mplsubgfilemcl  14657  mpladd  14662
  Copyright terms: Public domain W3C validator