HomeHome Intuitionistic Logic Explorer
Theorem List (p. 144 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14301-14400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrlmlmod 14301 The ring module is a module. (Contributed by Stefan O'Rear, 6-Dec-2014.)
 |-  ( R  e.  Ring  ->  (ringLMod `  R )  e. 
 LMod )
 
Theoremrlmvnegg 14302 Vector negation in the ring module. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 5-Jun-2015.)
 |-  ( R  e.  V  ->  ( invg `  R )  =  ( invg `  (ringLMod `  R ) ) )
 
Theoremixpsnbasval 14303* The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
 |-  ( ( R  e.  V  /\  X  e.  W )  ->  X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R ) } ) `  x ) )  =  {
 f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  ( Base `  R ) ) }
 )
 
7.6.2  Ideals and spans
 
Syntaxclidl 14304 Ring left-ideal function.
 class LIdeal
 
Syntaxcrsp 14305 Ring span function.
 class RSpan
 
Definitiondf-lidl 14306 Define the class of left ideals of a given ring. An ideal is a submodule of the ring viewed as a module over itself. (Contributed by Stefan O'Rear, 31-Mar-2015.)
 |- LIdeal  =  ( LSubSp  o. ringLMod )
 
Definitiondf-rsp 14307 Define the linear span function in a ring (Ideal generator). (Contributed by Stefan O'Rear, 4-Apr-2015.)
 |- RSpan  =  ( LSpan  o. ringLMod )
 
Theoremlidlvalg 14308 Value of the set of ring ideals. (Contributed by Stefan O'Rear, 31-Mar-2015.)
 |-  ( W  e.  V  ->  (LIdeal `  W )  =  ( LSubSp `  (ringLMod `  W ) ) )
 
Theoremrspvalg 14309 Value of the ring span function. (Contributed by Stefan O'Rear, 4-Apr-2015.)
 |-  ( W  e.  V  ->  (RSpan `  W )  =  ( LSpan `  (ringLMod `  W ) ) )
 
Theoremlidlex 14310 Existence of the set of left ideals. (Contributed by Jim Kingdon, 27-Apr-2025.)
 |-  ( W  e.  V  ->  (LIdeal `  W )  e.  _V )
 
Theoremrspex 14311 Existence of the ring span. (Contributed by Jim Kingdon, 25-Apr-2025.)
 |-  ( W  e.  V  ->  (RSpan `  W )  e.  _V )
 
Theoremlidlmex 14312 Existence of the set a left ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
 |-  I  =  (LIdeal `  W )   =>    |-  ( U  e.  I  ->  W  e.  _V )
 
Theoremlidlss 14313 An ideal is a subset of the base set. (Contributed by Stefan O'Rear, 28-Mar-2015.)
 |-  B  =  ( Base `  W )   &    |-  I  =  (LIdeal `  W )   =>    |-  ( U  e.  I  ->  U  C_  B )
 
Theoremlidlssbas 14314 The base set of the restriction of the ring to a (left) ideal is a subset of the base set of the ring. (Contributed by AV, 17-Feb-2020.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   =>    |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
 )
 
Theoremlidlbas 14315 A (left) ideal of a ring is the base set of the restriction of the ring to this ideal. (Contributed by AV, 17-Feb-2020.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   =>    |-  ( U  e.  L  ->  ( Base `  I )  =  U )
 
Theoremislidlm 14316* Predicate of being a (left) ideal. (Contributed by Stefan O'Rear, 1-Apr-2015.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .+  =  ( +g  `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
 ( x  .x.  a
 )  .+  b )  e.  I ) )
 
Theoremrnglidlmcl 14317 A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.)
 |- 
 .0.  =  ( 0g `  R )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  U  =  (LIdeal `  R )   =>    |-  ( ( ( R  e. Rng  /\  I  e.  U  /\  .0.  e.  I
 )  /\  ( X  e.  B  /\  Y  e.  I ) )  ->  ( X  .x.  Y )  e.  I )
 
Theoremdflidl2rng 14318* Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) ) 
 ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  ( x  .x.  y )  e.  I ) )
 
Theoremisridlrng 14319* A right ideal is a left ideal of the opposite non-unital ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I ) )
 
Theoremlidl0cl 14320 An ideal contains 0. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  U  =  (LIdeal `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  .0.  e.  I
 )
 
Theoremlidlacl 14321 An ideal is closed under addition. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  U  =  (LIdeal `  R )   &    |- 
 .+  =  ( +g  `  R )   =>    |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  ( X  e.  I  /\  Y  e.  I )
 )  ->  ( X  .+  Y )  e.  I
 )
 
Theoremlidlnegcl 14322 An ideal contains negatives. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  U  =  (LIdeal `  R )   &    |-  N  =  ( invg `  R )   =>    |-  ( ( R  e.  Ring  /\  I  e.  U  /\  X  e.  I ) 
 ->  ( N `  X )  e.  I )
 
Theoremlidlsubg 14323 An ideal is a subgroup of the additive group. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  U  =  (LIdeal `  R )   =>    |-  ( ( R  e.  Ring  /\  I  e.  U )  ->  I  e.  (SubGrp `  R ) )
 
Theoremlidlsubcl 14324 An ideal is closed under subtraction. (Contributed by Stefan O'Rear, 28-Mar-2015.) (Proof shortened by OpenAI, 25-Mar-2020.)
 |-  U  =  (LIdeal `  R )   &    |-  .-  =  ( -g `  R )   =>    |-  ( ( ( R  e.  Ring  /\  I  e.  U )  /\  ( X  e.  I  /\  Y  e.  I )
 )  ->  ( X  .-  Y )  e.  I
 )
 
Theoremdflidl2 14325* Alternate (the usual textbook) definition of a (left) ideal of a ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring 
 ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( x  .x.  y )  e.  I
 ) ) )
 
Theoremlidl0 14326 Every ring contains a zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  U  =  (LIdeal `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  {  .0.  }  e.  U )
 
Theoremlidl1 14327 Every ring contains a unit ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  U  =  (LIdeal `  R )   &    |-  B  =  ( Base `  R )   =>    |-  ( R  e.  Ring  ->  B  e.  U )
 
Theoremrspcl 14328 The span of a set of ring elements is an ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  K  =  (RSpan `  R )   &    |-  B  =  (
 Base `  R )   &    |-  U  =  (LIdeal `  R )   =>    |-  (
 ( R  e.  Ring  /\  G  C_  B )  ->  ( K `  G )  e.  U )
 
Theoremrspssid 14329 The span of a set of ring elements contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  K  =  (RSpan `  R )   &    |-  B  =  (
 Base `  R )   =>    |-  ( ( R  e.  Ring  /\  G  C_  B )  ->  G  C_  ( K `  G ) )
 
Theoremrsp0 14330 The span of the zero element is the zero ideal. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  K  =  (RSpan `  R )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  ( K `  {  .0.  } )  =  {  .0.  } )
 
Theoremrspssp 14331 The ideal span of a set of elements in a ring is contained in any subring which contains those elements. (Contributed by Stefan O'Rear, 3-Jan-2015.)
 |-  K  =  (RSpan `  R )   &    |-  U  =  (LIdeal `  R )   =>    |-  ( ( R  e.  Ring  /\  I  e.  U  /\  G  C_  I )  ->  ( K `  G )  C_  I )
 
Theoremlidlrsppropdg 14332* The left ideals and ring span of a ring depend only on the ring components. Here  W is expected to be either 
B (when closure is available) or  _V (when strong equality is available). (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  ( ph  ->  B  =  ( Base `  K )
 )   &    |-  ( ph  ->  B  =  ( Base `  L )
 )   &    |-  ( ph  ->  B  C_  W )   &    |-  ( ( ph  /\  ( x  e.  W  /\  y  e.  W ) )  ->  ( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( .r `  K ) y )  e.  W )   &    |-  ( ( ph  /\  ( x  e.  B  /\  y  e.  B ) )  ->  ( x ( .r `  K ) y )  =  ( x ( .r
 `  L ) y ) )   &    |-  ( ph  ->  K  e.  X )   &    |-  ( ph  ->  L  e.  Y )   =>    |-  ( ph  ->  (
 (LIdeal `  K )  =  (LIdeal `  L )  /\  (RSpan `  K )  =  (RSpan `  L )
 ) )
 
Theoremrnglidlmmgm 14333 The multiplicative group of a (left) ideal of a non-unital ring is a magma. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm
 )
 
Theoremrnglidlmsgrp 14334 The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp
 )
 
Theoremrnglidlrng 14335 A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  U  e.  (SubGrp `  R ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
 |-  L  =  (LIdeal `  R )   &    |-  I  =  ( Rs  U )   =>    |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R ) )  ->  I  e. Rng
 )
 
7.6.3  Two-sided ideals and quotient rings
 
Syntaxc2idl 14336 Ring two-sided ideal function.
 class 2Ideal
 
Definitiondf-2idl 14337 Define the class of two-sided ideals of a ring. A two-sided ideal is a left ideal which is also a right ideal (or a left ideal over the opposite ring). (Contributed by Mario Carneiro, 14-Jun-2015.)
 |- 2Ideal  =  ( r  e.  _V  |->  ( (LIdeal `  r )  i^i  (LIdeal `  (oppr `  r ) ) ) )
 
Theorem2idlmex 14338 Existence of the set a two-sided ideal is built from (when the ideal is inhabited). (Contributed by Jim Kingdon, 18-Apr-2025.)
 |-  T  =  (2Ideal `  W )   =>    |-  ( U  e.  T  ->  W  e.  _V )
 
Theorem2idlval 14339 Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  I  =  (LIdeal `  R )   &    |-  O  =  (oppr `  R )   &    |-  J  =  (LIdeal `  O )   &    |-  T  =  (2Ideal `  R )   =>    |-  T  =  ( I  i^i  J )
 
Theorem2idlvalg 14340 Definition of a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  I  =  (LIdeal `  R )   &    |-  O  =  (oppr `  R )   &    |-  J  =  (LIdeal `  O )   &    |-  T  =  (2Ideal `  R )   =>    |-  ( R  e.  V  ->  T  =  ( I  i^i  J ) )
 
Theoremisridl 14341* A right ideal is a left ideal of the opposite ring. This theorem shows that this definition corresponds to the usual textbook definition of a right ideal of a ring to be a subgroup of the additive group of the ring which is closed under right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring  ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( y  .x.  x )  e.  I ) ) )
 
Theorem2idlelb 14342 Membership in a two-sided ideal. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.)
 |-  I  =  (LIdeal `  R )   &    |-  O  =  (oppr `  R )   &    |-  J  =  (LIdeal `  O )   &    |-  T  =  (2Ideal `  R )   =>    |-  ( U  e.  T  <->  ( U  e.  I  /\  U  e.  J )
 )
 
Theorem2idllidld 14343 A two-sided ideal is a left ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   =>    |-  ( ph  ->  I  e.  (LIdeal `  R )
 )
 
Theorem2idlridld 14344 A two-sided ideal is a right ideal. (Contributed by Thierry Arnoux, 9-Mar-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   &    |-  O  =  (oppr `  R )   =>    |-  ( ph  ->  I  e.  (LIdeal `  O )
 )
 
Theoremdf2idl2rng 14345* Alternate (the usual textbook) definition of a two-sided ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
 |-  U  =  (2Ideal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) ) 
 ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I  (
 ( x  .x.  y
 )  e.  I  /\  ( y  .x.  x )  e.  I ) ) )
 
Theoremdf2idl2 14346* Alternate (the usual textbook) definition of a two-sided ideal of a ring to be a subgroup of the additive group of the ring which is closed under left- and right-multiplication by elements of the full ring. (Contributed by AV, 13-Feb-2025.) (Proof shortened by AV, 18-Apr-2025.)
 |-  U  =  (2Ideal `  R )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( R  e.  Ring 
 ->  ( I  e.  U  <->  ( I  e.  (SubGrp `  R )  /\  A. x  e.  B  A. y  e.  I  ( ( x 
 .x.  y )  e.  I  /\  ( y 
 .x.  x )  e.  I ) ) ) )
 
Theoremridl0 14347 Every ring contains a zero right ideal. (Contributed by AV, 13-Feb-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  {  .0.  }  e.  U )
 
Theoremridl1 14348 Every ring contains a unit right ideal. (Contributed by AV, 13-Feb-2025.)
 |-  U  =  (LIdeal `  (oppr `  R ) )   &    |-  B  =  (
 Base `  R )   =>    |-  ( R  e.  Ring 
 ->  B  e.  U )
 
Theorem2idl0 14349 Every ring contains a zero two-sided ideal. (Contributed by AV, 13-Feb-2025.)
 |-  I  =  (2Ideal `  R )   &    |- 
 .0.  =  ( 0g `  R )   =>    |-  ( R  e.  Ring  ->  {  .0.  }  e.  I
 )
 
Theorem2idl1 14350 Every ring contains a unit two-sided ideal. (Contributed by AV, 13-Feb-2025.)
 |-  I  =  (2Ideal `  R )   &    |-  B  =  ( Base `  R )   =>    |-  ( R  e.  Ring  ->  B  e.  I )
 
Theorem2idlss 14351 A two-sided ideal is a subset of the base set. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by AV, 20-Feb-2025.) (Proof shortened by AV, 13-Mar-2025.)
 |-  B  =  ( Base `  W )   &    |-  I  =  (2Ideal `  W )   =>    |-  ( U  e.  I  ->  U  C_  B )
 
Theorem2idlbas 14352 The base set of a two-sided ideal as structure. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   &    |-  J  =  ( Rs  I )   &    |-  B  =  (
 Base `  J )   =>    |-  ( ph  ->  B  =  I )
 
Theorem2idlelbas 14353 The base set of a two-sided ideal as structure is a left and right ideal. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  I  e.  (2Ideal `  R )
 )   &    |-  J  =  ( Rs  I )   &    |-  B  =  (
 Base `  J )   =>    |-  ( ph  ->  ( B  e.  (LIdeal `  R )  /\  B  e.  (LIdeal `  (oppr `  R ) ) ) )
 
Theoremrng2idlsubrng 14354 A two-sided ideal of a non-unital ring which is a non-unital ring is a subring of the ring. (Contributed by AV, 20-Feb-2025.) (Revised by AV, 11-Mar-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  ( Rs  I )  e. Rng )   =>    |-  ( ph  ->  I  e.  (SubRng `  R ) )
 
Theoremrng2idlnsg 14355 A two-sided ideal of a non-unital ring which is a non-unital ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  ( Rs  I )  e. Rng )   =>    |-  ( ph  ->  I  e.  (NrmSGrp `  R ) )
 
Theoremrng2idl0 14356 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a non-unital ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  ( Rs  I )  e. Rng )   =>    |-  ( ph  ->  ( 0g `  R )  e.  I
 )
 
Theoremrng2idlsubgsubrng 14357 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a subring of the ring. (Contributed by AV, 11-Mar-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  I  e.  (SubRng `  R )
 )
 
Theoremrng2idlsubgnsg 14358 A two-sided ideal of a non-unital ring which is a subgroup of the ring is a normal subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  I  e.  (NrmSGrp `  R )
 )
 
Theoremrng2idlsubg0 14359 The zero (additive identity) of a non-unital ring is an element of each two-sided ideal of the ring which is a subgroup of the ring. (Contributed by AV, 20-Feb-2025.)
 |-  ( ph  ->  R  e. Rng )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  I  e.  (SubGrp `  R ) )   =>    |-  ( ph  ->  ( 0g `  R )  e.  I )
 
Theorem2idlcpblrng 14360 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) Generalization for non-unital rings and two-sided ideals which are subgroups of the additive group of the non-unital ring. (Revised by AV, 23-Feb-2025.)
 |-  X  =  ( Base `  R )   &    |-  E  =  ( R ~QG 
 S )   &    |-  I  =  (2Ideal `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R ) )  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C 
 .x.  D ) ) )
 
Theorem2idlcpbl 14361 The coset equivalence relation for a two-sided ideal is compatible with ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.) (Proof shortened by AV, 31-Mar-2025.)
 |-  X  =  ( Base `  R )   &    |-  E  =  ( R ~QG 
 S )   &    |-  I  =  (2Ideal `  R )   &    |-  .x.  =  ( .r `  R )   =>    |-  ( ( R  e.  Ring  /\  S  e.  I )  ->  ( ( A E C  /\  B E D )  ->  ( A  .x.  B ) E ( C  .x.  D ) ) )
 
Theoremqus2idrng 14362 The quotient of a non-unital ring modulo a two-sided ideal, which is a subgroup of the additive group of the non-unital ring, is a non-unital ring (qusring 14364 analog). (Contributed by AV, 23-Feb-2025.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   =>    |-  (
 ( R  e. Rng  /\  S  e.  I  /\  S  e.  (SubGrp `  R ) )  ->  U  e. Rng )
 
Theoremqus1 14363 The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   &    |-  .1.  =  ( 1r `  R )   =>    |-  ( ( R  e.  Ring  /\  S  e.  I ) 
 ->  ( U  e.  Ring  /\ 
 [  .1.  ] ( R ~QG  S )  =  ( 1r
 `  U ) ) )
 
Theoremqusring 14364 If  S is a two-sided ideal in  R, then  U  =  R  /  S is a ring, called the quotient ring of 
R by  S. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   =>    |-  (
 ( R  e.  Ring  /\  S  e.  I ) 
 ->  U  e.  Ring )
 
Theoremqusrhm 14365* If  S is a two-sided ideal in  R, then the "natural map" from elements to their cosets is a ring homomorphism from  R to  R  /  S. (Contributed by Mario Carneiro, 15-Jun-2015.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (2Ideal `  R )   &    |-  X  =  ( Base `  R )   &    |-  F  =  ( x  e.  X  |->  [ x ] ( R ~QG  S ) )   =>    |-  ( ( R  e.  Ring  /\  S  e.  I ) 
 ->  F  e.  ( R RingHom  U ) )
 
Theoremqusmul2 14366 Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024.)
 |-  Q  =  ( R 
 /.s 
 ( R ~QG  I ) )   &    |-  B  =  ( Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .X. 
 =  ( .r `  Q )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  ( ph  ->  I  e.  (2Ideal `  R ) )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( [ X ] ( R ~QG  I )  .X.  [ Y ] ( R ~QG  I )
 )  =  [ ( X  .x.  Y ) ]
 ( R ~QG  I ) )
 
Theoremcrngridl 14367 In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  I  =  (LIdeal `  R )   &    |-  O  =  (oppr `  R )   =>    |-  ( R  e.  CRing  ->  I  =  (LIdeal `  O ) )
 
Theoremcrng2idl 14368 In a commutative ring, a two-sided ideal is the same as a left ideal. (Contributed by Mario Carneiro, 14-Jun-2015.)
 |-  I  =  (LIdeal `  R )   =>    |-  ( R  e.  CRing  ->  I  =  (2Ideal `  R ) )
 
Theoremqusmulrng 14369 Value of the multiplication operation in a quotient ring of a non-unital ring. Formerly part of proof for quscrng 14370. Similar to qusmul2 14366. (Contributed by Mario Carneiro, 15-Jun-2015.) (Revised by AV, 28-Feb-2025.)
 |- 
 .~  =  ( R ~QG  S )   &    |-  H  =  ( R 
 /.s  .~  )   &    |-  B  =  (
 Base `  R )   &    |-  .x.  =  ( .r `  R )   &    |-  .xb 
 =  ( .r `  H )   =>    |-  ( ( ( R  e. Rng  /\  S  e.  (2Ideal `  R )  /\  S  e.  (SubGrp `  R ) )  /\  ( X  e.  B  /\  Y  e.  B ) )  ->  ( [ X ]  .~  .xb  [ Y ]  .~  )  =  [ ( X  .x.  Y ) ]  .~  )
 
Theoremquscrng 14370 The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.) (Proof shortened by AV, 3-Apr-2025.)
 |-  U  =  ( R 
 /.s 
 ( R ~QG  S ) )   &    |-  I  =  (LIdeal `  R )   =>    |-  (
 ( R  e.  CRing  /\  S  e.  I ) 
 ->  U  e.  CRing )
 
7.6.4  Principal ideal rings. Divisibility in the integers
 
Theoremrspsn 14371* Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
 |-  B  =  ( Base `  R )   &    |-  K  =  (RSpan `  R )   &    |-  .||  =  ( ||r `  R )   =>    |-  ( ( R  e.  Ring  /\  G  e.  B ) 
 ->  ( K `  { G } )  =  { x  |  G  .||  x }
 )
 
7.7  The complex numbers as an algebraic extensible structure
 
7.7.1  Definition and basic properties
 
Syntaxcpsmet 14372 Extend class notation with the class of all pseudometric spaces.
 class PsMet
 
Syntaxcxmet 14373 Extend class notation with the class of all extended metric spaces.
 class  *Met
 
Syntaxcmet 14374 Extend class notation with the class of all metrics.
 class  Met
 
Syntaxcbl 14375 Extend class notation with the metric space ball function.
 class  ball
 
Syntaxcfbas 14376 Extend class definition to include the class of filter bases.
 class  fBas
 
Syntaxcfg 14377 Extend class definition to include the filter generating function.
 class  filGen
 
Syntaxcmopn 14378 Extend class notation with a function mapping each metric space to the family of its open sets.
 class  MetOpen
 
Syntaxcmetu 14379 Extend class notation with the function mapping metrics to the uniform structure generated by that metric.
 class metUnif
 
Definitiondf-psmet 14380* Define the set of all pseudometrics on a given base set. In a pseudo metric, two distinct points may have a distance zero. (Contributed by Thierry Arnoux, 7-Feb-2018.)
 |- PsMet  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  ( (
 y d y )  =  0  /\  A. z  e.  x  A. w  e.  x  (
 y d z ) 
 <_  ( ( w d y ) +e
 ( w d z ) ) ) }
 )
 
Definitiondf-xmet 14381* Define the set of all extended metrics on a given base set. The definition is similar to df-met 14382, but we also allow the metric to take on the value +oo. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |- 
 *Met  =  ( x  e.  _V  |->  { d  e.  ( RR*  ^m  ( x  X.  x ) )  |  A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <->  y  =  z
 )  /\  A. w  e.  x  ( y d z )  <_  (
 ( w d y ) +e ( w d z ) ) ) } )
 
Definitiondf-met 14382* Define the (proper) class of all metrics. (A metric space is the metric's base set paired with the metric. However, we will often also call the metric itself a "metric space".) Equivalent to Definition 14-1.1 of [Gleason] p. 223. (Contributed by NM, 25-Aug-2006.)
 |- 
 Met  =  ( x  e.  _V  |->  { d  e.  ( RR  ^m  ( x  X.  x ) )  | 
 A. y  e.  x  A. z  e.  x  ( ( ( y d z )  =  0  <-> 
 y  =  z ) 
 /\  A. w  e.  x  ( y d z )  <_  ( ( w d y )  +  ( w d z ) ) ) } )
 
Definitiondf-bl 14383* Define the metric space ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- 
 ball  =  ( d  e.  _V  |->  ( x  e. 
 dom  dom  d ,  z  e.  RR*  |->  { y  e.  dom  dom  d  |  ( x d y )  < 
 z } ) )
 
Definitiondf-mopn 14384 Define a function whose value is the family of open sets of a metric space. (Contributed by NM, 1-Sep-2006.)
 |-  MetOpen  =  ( d  e. 
 U. ran  *Met  |->  ( topGen `  ran  ( ball `  d ) ) )
 
Definitiondf-fbas 14385* Define the class of all filter bases. Note that a filter base on one set is also a filter base for any superset, so there is not a unique base set that can be recovered. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |- 
 fBas  =  ( w  e.  _V  |->  { x  e.  ~P ~P w  |  ( x  =/=  (/)  /\  (/)  e/  x  /\  A. y  e.  x  A. z  e.  x  ( x  i^i  ~P (
 y  i^i  z )
 )  =/=  (/) ) }
 )
 
Definitiondf-fg 14386* Define the filter generating function. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 11-Jul-2015.)
 |-  filGen  =  ( w  e. 
 _V ,  x  e.  ( fBas `  w )  |->  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) } )
 
Definitiondf-metu 14387* Define the function mapping metrics to the uniform structure generated by that metric. (Contributed by Thierry Arnoux, 1-Dec-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
 |- metUnif  =  ( d  e.  U. ran PsMet 
 |->  ( ( dom  dom  d  X.  dom  dom  d )
 filGen ran  ( a  e.  RR+  |->  ( `' d " ( 0 [,) a
 ) ) ) ) )
 
Theoremblfn 14388 The ball function has universal domain. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |- 
 ball  Fn  _V
 
Theoremmopnset 14389 Getting a set by applying 
MetOpen. (Contributed by Jim Kingdon, 24-Sep-2025.)
 |-  ( D  e.  V  ->  ( MetOpen `  D )  e.  _V )
 
Theoremcndsex 14390 The standard distance function on the complex numbers is a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( abs  o.  -  )  e.  _V
 
Theoremcntopex 14391 The standard topology on the complex numbers is a set. (Contributed by Jim Kingdon, 25-Sep-2025.)
 |-  ( MetOpen `  ( abs  o. 
 -  ) )  e. 
 _V
 
Theoremmetuex 14392 Applying metUnif yields a set. (Contributed by Jim Kingdon, 28-Sep-2025.)
 |-  ( A  e.  V  ->  (metUnif `  A )  e.  _V )
 
Syntaxccnfld 14393 Extend class notation with the field of complex numbers.
 classfld
 
Definitiondf-cnfld 14394* The field of complex numbers. Other number fields and rings can be constructed by applying the ↾s restriction operator.

The contract of this set is defined entirely by cnfldex 14396, cnfldadd 14399, cnfldmul 14401, cnfldcj 14402, cnfldtset 14403, cnfldle 14404, cnfldds 14405, and cnfldbas 14397. We may add additional members to this in the future. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Thierry Arnoux, 15-Dec-2017.) Use maps-to notation for addition and multiplication. (Revised by GG, 31-Mar-2025.) (New usage is discouraged.)

 |-fld  =  ( ( { <. (
 Base `  ndx ) ,  CC >. ,  <. ( +g  ` 
 ndx ) ,  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) >. , 
 <. ( .r `  ndx ) ,  ( x  e.  CC ,  y  e. 
 CC  |->  ( x  x.  y ) ) >. }  u.  { <. ( *r `  ndx ) ,  * >. } )  u.  ( { <. (TopSet `  ndx ) ,  ( MetOpen `  ( abs  o.  -  )
 ) >. ,  <. ( le ` 
 ndx ) ,  <_  >. ,  <. ( dist `  ndx ) ,  ( abs  o. 
 -  ) >. }  u.  {
 <. ( UnifSet `  ndx ) ,  (metUnif `  ( abs  o. 
 -  ) ) >. } ) )
 
Theoremcnfldstr 14395 The field of complex numbers is a structure. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-fld Struct  <. 1 , ; 1 3 >.
 
Theoremcnfldex 14396 The field of complex numbers is a set. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 14-Aug-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |-fld  e.  _V
 
Theoremcnfldbas 14397 The base set of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.)
 |- 
 CC  =  ( Base ` fld )
 
Theoremmpocnfldadd 14398* The addition operation of the field of complex numbers. Version of cnfldadd 14399 using maps-to notation, which does not require ax-addf 8067. (Contributed by GG, 31-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y
 ) )  =  (
 +g  ` fld )
 
Theoremcnfldadd 14399 The addition operation of the field of complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 6-Oct-2015.) (Revised by Thierry Arnoux, 17-Dec-2017.) (Revised by GG, 27-Apr-2025.)
 |- 
 +  =  ( +g  ` fld )
 
Theoremmpocnfldmul 14400* The multiplication operation of the field of complex numbers. Version of cnfldmul 14401 using maps-to notation, which does not require ax-mulf 8068. (Contributed by GG, 31-Mar-2025.)
 |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  x.  y
 ) )  =  ( .r ` fld )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >