HomeHome Intuitionistic Logic Explorer
Theorem List (p. 144 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14301-14400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremfczpsrbag 14301* The constant function equal to zero is a finite bag. (Contributed by AV, 8-Jul-2019.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( I  e.  V  ->  ( x  e.  I  |->  0 )  e.  D )
 
Theorempsrbaglesuppg 14302* The support of a dominated bag is smaller than the dominating bag. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   =>    |-  ( ( I  e.  V  /\  ( F  e.  D  /\  G : I --> NN0  /\  G  oR  <_  F ) ) 
 ->  ( `' G " NN )  C_  ( `' F " NN )
 )
 
Theorempsrbasg 14303* The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  W )   =>    |-  ( ph  ->  B  =  ( K  ^m  D ) )
 
Theorempsrelbas 14304* An element of the set of power series is a function on the coefficients. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  K  =  (
 Base `  R )   &    |-  D  =  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  X : D --> K )
 
Theorempsrelbasfun 14305 An element of the set of power series is a function. (Contributed by AV, 17-Jul-2019.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   =>    |-  ( X  e.  B  ->  Fun  X )
 
Theorempsrplusgg 14306 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  R )   &    |-  .+b  =  ( +g  `  S )   =>    |-  (
 ( I  e.  V  /\  R  e.  W ) 
 ->  .+b  =  (  oF  .+  |`  ( B  X.  B ) ) )
 
Theorempsradd 14307 The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  R )   &    |-  .+b  =  ( +g  `  S )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+b  Y )  =  ( X  oF  .+  Y ) )
 
Theorempsraddcl 14308 Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  B  =  (
 Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  ( ph  ->  R  e. Mgm )   &    |-  ( ph  ->  X  e.  B )   &    |-  ( ph  ->  Y  e.  B )   =>    |-  ( ph  ->  ( X  .+  Y )  e.  B )
 
Theorempsr0cl 14309* The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  .0.  =  ( 0g `  R )   &    |-  B  =  ( Base `  S )   =>    |-  ( ph  ->  ( D  X.  {  .0.  }
 )  e.  B )
 
Theorempsr0lid 14310* The zero element of the ring of power series is a left identity. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  .0.  =  ( 0g `  R )   &    |-  B  =  ( Base `  S )   &    |-  .+  =  ( +g  `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  (
 ( D  X.  {  .0.  } )  .+  X )  =  X )
 
Theorempsrnegcl 14311* The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  N  =  ( invg `  R )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( N  o.  X )  e.  B )
 
Theorempsrlinv 14312* The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  N  =  ( invg `  R )   &    |-  B  =  ( Base `  S )   &    |-  ( ph  ->  X  e.  B )   &    |-  .0.  =  ( 0g `  R )   &    |- 
 .+  =  ( +g  `  S )   =>    |-  ( ph  ->  (
 ( N  o.  X )  .+  X )  =  ( D  X.  {  .0.  } ) )
 
Theorempsrgrp 14313 The ring of power series is a group. (Contributed by Mario Carneiro, 29-Dec-2014.) (Proof shortened by SN, 7-Feb-2025.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   =>    |-  ( ph  ->  S  e.  Grp )
 
Theorempsr0 14314* The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  O  =  ( 0g `  R )   &    |-  .0.  =  ( 0g `  S )   =>    |-  ( ph  ->  .0.  =  ( D  X.  { O } ) )
 
Theorempsrneg 14315* The negative function of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  V )   &    |-  ( ph  ->  R  e.  Grp )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  N  =  ( invg `  R )   &    |-  B  =  ( Base `  S )   &    |-  M  =  ( invg `  S )   &    |-  ( ph  ->  X  e.  B )   =>    |-  ( ph  ->  ( M `  X )  =  ( N  o.  X ) )
 
Theorempsr1clfi 14316* The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
 |-  S  =  ( I mPwSer  R )   &    |-  ( ph  ->  I  e.  Fin )   &    |-  ( ph  ->  R  e.  Ring )   &    |-  D  =  { f  e.  ( NN0  ^m  I
 )  |  ( `' f " NN )  e.  Fin }   &    |-  .0.  =  ( 0g `  R )   &    |-  .1.  =  ( 1r `  R )   &    |-  U  =  ( x  e.  D  |->  if ( x  =  ( I  X.  { 0 } ) ,  .1.  ,  .0.  ) )   &    |-  B  =  ( Base `  S )   =>    |-  ( ph  ->  U  e.  B )
 
PART 9  BASIC TOPOLOGY
 
9.1  Topology
 
9.1.1  Topological spaces

A topology on a set is a set of subsets of that set, called open sets, which satisfy certain conditions. One condition is that the whole set be an open set. Therefore, a set is recoverable from a topology on it (as its union), and it may sometimes be more convenient to consider topologies without reference to the underlying set.

 
9.1.1.1  Topologies
 
Syntaxctop 14317 Syntax for the class of topologies.
 class  Top
 
Definitiondf-top 14318* Define the class of topologies. It is a proper class. See istopg 14319 and istopfin 14320 for the corresponding characterizations, using respectively binary intersections like in this definition and nonempty finite intersections.

The final form of the definition is due to Bourbaki (Def. 1 of [BourbakiTop1] p. I.1), while the idea of defining a topology in terms of its open sets is due to Aleksandrov. For the convoluted history of the definitions of these notions, see

Gregory H. Moore, The emergence of open sets, closed sets, and limit points in analysis and topology, Historia Mathematica 35 (2008) 220--241.

(Contributed by NM, 3-Mar-2006.) (Revised by BJ, 20-Oct-2018.)

 |- 
 Top  =  { x  |  ( A. y  e. 
 ~P  x U. y  e.  x  /\  A. y  e.  x  A. z  e.  x  ( y  i^i  z )  e.  x ) }
 
Theoremistopg 14319* Express the predicate " J is a topology". See istopfin 14320 for another characterization using nonempty finite intersections instead of binary intersections.

Note: In the literature, a topology is often represented by a calligraphic letter T, which resembles the letter J. This confusion may have led to J being used by some authors (e.g., K. D. Joshi, Introduction to General Topology (1983), p. 114) and it is convenient for us since we later use  T to represent linear transformations (operators). (Contributed by Stefan Allan, 3-Mar-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)

 |-  ( J  e.  A  ->  ( J  e.  Top  <->  ( A. x ( x  C_  J  ->  U. x  e.  J )  /\  A. x  e.  J  A. y  e.  J  ( x  i^i  y )  e.  J ) ) )
 
Theoremistopfin 14320* Express the predicate " J is a topology" using nonempty finite intersections instead of binary intersections as in istopg 14319. It is not clear we can prove the converse without adding additional conditions. (Contributed by NM, 19-Jul-2006.) (Revised by Jim Kingdon, 14-Jan-2023.)
 |-  ( J  e.  Top  ->  ( A. x ( x 
 C_  J  ->  U. x  e.  J )  /\  A. x ( ( x 
 C_  J  /\  x  =/= 
 (/)  /\  x  e.  Fin )  ->  |^| x  e.  J ) ) )
 
Theoremuniopn 14321 The union of a subset of a topology (that is, the union of any family of open sets of a topology) is an open set. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( ( J  e.  Top  /\  A  C_  J )  ->  U. A  e.  J )
 
Theoremiunopn 14322* The indexed union of a subset of a topology is an open set. (Contributed by NM, 5-Oct-2006.)
 |-  ( ( J  e.  Top  /\  A. x  e.  A  B  e.  J )  -> 
 U_ x  e.  A  B  e.  J )
 
Theoreminopn 14323 The intersection of two open sets of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  i^i  B )  e.  J )
 
Theoremfiinopn 14324 The intersection of a nonempty finite family of open sets is open. (Contributed by FL, 20-Apr-2012.)
 |-  ( J  e.  Top  ->  ( ( A  C_  J  /\  A  =/=  (/)  /\  A  e.  Fin )  ->  |^| A  e.  J ) )
 
Theoremunopn 14325 The union of two open sets is open. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B )  e.  J )
 
Theorem0opn 14326 The empty set is an open subset of any topology. (Contributed by Stefan Allan, 27-Feb-2006.)
 |-  ( J  e.  Top  ->  (/) 
 e.  J )
 
Theorem0ntop 14327 The empty set is not a topology. (Contributed by FL, 1-Jun-2008.)
 |- 
 -.  (/)  e.  Top
 
Theoremtopopn 14328 The underlying set of a topology is an open set. (Contributed by NM, 17-Jul-2006.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  ->  X  e.  J )
 
Theoremeltopss 14329 A member of a topology is a subset of its underlying set. (Contributed by NM, 12-Sep-2006.)
 |-  X  =  U. J   =>    |-  (
 ( J  e.  Top  /\  A  e.  J ) 
 ->  A  C_  X )
 
9.1.1.2  Topologies on sets
 
Syntaxctopon 14330 Syntax for the function of topologies on sets.
 class TopOn
 
Definitiondf-topon 14331* Define the function that associates with a set the set of topologies on it. (Contributed by Stefan O'Rear, 31-Jan-2015.)
 |- TopOn  =  ( b  e.  _V  |->  { j  e.  Top  |  b  =  U. j }
 )
 
Theoremfuntopon 14332 The class TopOn is a function. (Contributed by BJ, 29-Apr-2021.)
 |- 
 Fun TopOn
 
Theoremistopon 14333 Property of being a topology with a given base set. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  <->  ( J  e.  Top  /\  B  =  U. J ) )
 
Theoremtopontop 14334 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  ->  J  e.  Top )
 
Theoremtoponuni 14335 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  ->  B  =  U. J )
 
Theoremtopontopi 14336 A topology on a given base set is a topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  J  e.  (TopOn `  B )   =>    |-  J  e.  Top
 
Theoremtoponunii 14337 The base set of a topology on a given base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  J  e.  (TopOn `  B )   =>    |-  B  =  U. J
 
Theoremtoptopon 14338 Alternative definition of  Top in terms of TopOn. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  X  =  U. J   =>    |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
 
Theoremtoptopon2 14339 A topology is the same thing as a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
 |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
 
Theoremtopontopon 14340 A topology on a set is a topology on the union of its open sets. (Contributed by BJ, 27-Apr-2021.)
 |-  ( J  e.  (TopOn `  X )  ->  J  e.  (TopOn `  U. J ) )
 
Theoremtoponrestid 14341 Given a topology on a set, restricting it to that same set has no effect. (Contributed by Jim Kingdon, 6-Jul-2022.)
 |-  A  e.  (TopOn `  B )   =>    |-  A  =  ( At  B )
 
Theoremtoponsspwpwg 14342 The set of topologies on a set is included in the double power set of that set. (Contributed by BJ, 29-Apr-2021.) (Revised by Jim Kingdon, 16-Jan-2023.)
 |-  ( A  e.  V  ->  (TopOn `  A )  C_ 
 ~P ~P A )
 
Theoremdmtopon 14343 The domain of TopOn is  _V. (Contributed by BJ, 29-Apr-2021.)
 |- 
 dom TopOn  =  _V
 
Theoremfntopon 14344 The class TopOn is a function with domain  _V. (Contributed by BJ, 29-Apr-2021.)
 |- TopOn  Fn  _V
 
Theoremtoponmax 14345 The base set of a topology is an open set. (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  ( J  e.  (TopOn `  B )  ->  B  e.  J )
 
Theoremtoponss 14346 A member of a topology is a subset of its underlying set. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  J )  ->  A  C_  X )
 
Theoremtoponcom 14347 If  K is a topology on the base set of topology  J, then  J is a topology on the base of  K. (Contributed by Mario Carneiro, 22-Aug-2015.)
 |-  ( ( J  e.  Top  /\  K  e.  (TopOn `  U. J ) )  ->  J  e.  (TopOn `  U. K ) )
 
Theoremtoponcomb 14348 Biconditional form of toponcom 14347. (Contributed by BJ, 5-Dec-2021.)
 |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( J  e.  (TopOn ` 
 U. K )  <->  K  e.  (TopOn ` 
 U. J ) ) )
 
Theoremtopgele 14349 The topologies over the same set have the greatest element (the discrete topology) and the least element (the indiscrete topology). (Contributed by FL, 18-Apr-2010.) (Revised by Mario Carneiro, 16-Sep-2015.)
 |-  ( J  e.  (TopOn `  X )  ->  ( { (/) ,  X }  C_  J  /\  J  C_  ~P X ) )
 
9.1.1.3  Topological spaces
 
Syntaxctps 14350 Syntax for the class of topological spaces.
 class  TopSp
 
Definitiondf-topsp 14351 Define the class of topological spaces (as extensible structures). (Contributed by Stefan O'Rear, 13-Aug-2015.)
 |- 
 TopSp  =  { f  |  ( TopOpen `  f )  e.  (TopOn `  ( Base `  f ) ) }
 
Theoremistps 14352 Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  A  =  ( Base `  K )   &    |-  J  =  (
 TopOpen `  K )   =>    |-  ( K  e.  TopSp  <->  J  e.  (TopOn `  A ) )
 
Theoremistps2 14353 Express the predicate "is a topological space". (Contributed by NM, 20-Oct-2012.)
 |-  A  =  ( Base `  K )   &    |-  J  =  (
 TopOpen `  K )   =>    |-  ( K  e.  TopSp  <->  ( J  e.  Top  /\  A  =  U. J ) )
 
Theoremtpsuni 14354 The base set of a topological space. (Contributed by FL, 27-Jun-2014.)
 |-  A  =  ( Base `  K )   &    |-  J  =  (
 TopOpen `  K )   =>    |-  ( K  e.  TopSp  ->  A  =  U. J )
 
Theoremtpstop 14355 The topology extractor on a topological space is a topology. (Contributed by FL, 27-Jun-2014.)
 |-  J  =  ( TopOpen `  K )   =>    |-  ( K  e.  TopSp  ->  J  e.  Top )
 
Theoremtpspropd 14356 A topological space depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  ( ph  ->  ( Base `  K )  =  ( Base `  L )
 )   &    |-  ( ph  ->  ( TopOpen `  K )  =  (
 TopOpen `  L ) )   =>    |-  ( ph  ->  ( K  e.  TopSp 
 <->  L  e.  TopSp ) )
 
Theoremtopontopn 14357 Express the predicate "is a topological space". (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  A  =  ( Base `  K )   &    |-  J  =  (TopSet `  K )   =>    |-  ( J  e.  (TopOn `  A )  ->  J  =  ( TopOpen `  K )
 )
 
Theoremtsettps 14358 If the topology component is already correctly truncated, then it forms a topological space (with the topology extractor function coming out the same as the component). (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  A  =  ( Base `  K )   &    |-  J  =  (TopSet `  K )   =>    |-  ( J  e.  (TopOn `  A )  ->  K  e.  TopSp )
 
Theoremistpsi 14359 Properties that determine a topological space. (Contributed by NM, 20-Oct-2012.)
 |-  ( Base `  K )  =  A   &    |-  ( TopOpen `  K )  =  J   &    |-  A  =  U. J   &    |-  J  e.  Top   =>    |-  K  e.  TopSp
 
Theoremeltpsg 14360 Properties that determine a topological space from a construction (using no explicit indices). (Contributed by Mario Carneiro, 13-Aug-2015.)
 |-  K  =  { <. (
 Base `  ndx ) ,  A >. ,  <. (TopSet `  ndx ) ,  J >. }   =>    |-  ( J  e.  (TopOn `  A )  ->  K  e.  TopSp )
 
Theoremeltpsi 14361 Properties that determine a topological space from a construction (using no explicit indices). (Contributed by NM, 20-Oct-2012.) (Revised by Mario Carneiro, 13-Aug-2015.)
 |-  K  =  { <. (
 Base `  ndx ) ,  A >. ,  <. (TopSet `  ndx ) ,  J >. }   &    |-  A  =  U. J   &    |-  J  e.  Top   =>    |-  K  e.  TopSp
 
9.1.2  Topological bases
 
Syntaxctb 14362 Syntax for the class of topological bases.
 class  TopBases
 
Definitiondf-bases 14363* Define the class of topological bases. Equivalent to definition of basis in [Munkres] p. 78 (see isbasis2g 14365). Note that "bases" is the plural of "basis". (Contributed by NM, 17-Jul-2006.)
 |-  TopBases 
 =  { x  |  A. y  e.  x  A. z  e.  x  ( y  i^i  z ) 
 C_  U. ( x  i^i  ~P ( y  i^i  z
 ) ) }
 
Theoremisbasisg 14364* Express the predicate "the set 
B is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
 |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  ( x  i^i  y ) 
 C_  U. ( B  i^i  ~P ( x  i^i  y
 ) ) ) )
 
Theoremisbasis2g 14365* Express the predicate "the set 
B is a basis for a topology". (Contributed by NM, 17-Jul-2006.)
 |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  A. x  e.  B  A. y  e.  B  A. z  e.  ( x  i^i  y ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) )
 
Theoremisbasis3g 14366* Express the predicate "the set 
B is a basis for a topology". Definition of basis in [Munkres] p. 78. (Contributed by NM, 17-Jul-2006.)
 |-  ( B  e.  C  ->  ( B  e.  TopBases  <->  ( A. x  e.  B  x  C_  U. B  /\  A. x  e.  U. B E. y  e.  B  x  e.  y  /\  A. x  e.  B  A. y  e.  B  A. z  e.  ( x  i^i  y
 ) E. w  e.  B  ( z  e.  w  /\  w  C_  ( x  i^i  y ) ) ) ) )
 
Theorembasis1 14367 Property of a basis. (Contributed by NM, 16-Jul-2006.)
 |-  ( ( B  e.  TopBases  /\  C  e.  B  /\  D  e.  B )  ->  ( C  i^i  D )  C_  U. ( B  i^i  ~P ( C  i^i  D ) ) )
 
Theorembasis2 14368* Property of a basis. (Contributed by NM, 17-Jul-2006.)
 |-  ( ( ( B  e.  TopBases  /\  C  e.  B )  /\  ( D  e.  B  /\  A  e.  ( C  i^i  D ) ) )  ->  E. x  e.  B  ( A  e.  x  /\  x  C_  ( C  i^i  D ) ) )
 
Theoremfiinbas 14369* If a set is closed under finite intersection, then it is a basis for a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( ( B  e.  C  /\  A. x  e.  B  A. y  e.  B  ( x  i^i  y )  e.  B )  ->  B  e.  TopBases )
 
Theorembaspartn 14370* A disjoint system of sets is a basis for a topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
 |-  ( ( P  e.  V  /\  A. x  e.  P  A. y  e.  P  ( x  =  y  \/  ( x  i^i  y )  =  (/) ) )  ->  P  e. 
 TopBases )
 
Theoremtgval2 14371* Definition of a topology generated by a basis in [Munkres] p. 78. Later we show (in tgcl 14384) that  ( topGen `  B ) is indeed a topology (on  U. B, see unitg 14382). See also tgval 12964 and tgval3 14378. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
 |-  ( B  e.  V  ->  ( topGen `  B )  =  { x  |  ( x  C_  U. B  /\  A. y  e.  x  E. z  e.  B  (
 y  e.  z  /\  z  C_  x ) ) } )
 
Theoremeltg 14372 Membership in a topology generated by a basis. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
 |-  ( B  e.  V  ->  ( A  e.  ( topGen `
  B )  <->  A  C_  U. ( B  i^i  ~P A ) ) )
 
Theoremeltg2 14373* Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
 |-  ( B  e.  V  ->  ( A  e.  ( topGen `
  B )  <->  ( A  C_  U. B  /\  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) ) )
 
Theoremeltg2b 14374* Membership in a topology generated by a basis. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Mario Carneiro, 10-Jan-2015.)
 |-  ( B  e.  V  ->  ( A  e.  ( topGen `
  B )  <->  A. x  e.  A  E. y  e.  B  ( x  e.  y  /\  y  C_  A ) ) )
 
Theoremeltg4i 14375 An open set in a topology generated by a basis is the union of all basic open sets contained in it. (Contributed by Stefan O'Rear, 22-Feb-2015.)
 |-  ( A  e.  ( topGen `
  B )  ->  A  =  U. ( B  i^i  ~P A ) )
 
Theoremeltg3i 14376 The union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 30-Aug-2015.)
 |-  ( ( B  e.  V  /\  A  C_  B )  ->  U. A  e.  ( topGen `
  B ) )
 
Theoremeltg3 14377* Membership in a topology generated by a basis. (Contributed by NM, 15-Jul-2006.) (Revised by Jim Kingdon, 4-Mar-2023.)
 |-  ( B  e.  V  ->  ( A  e.  ( topGen `
  B )  <->  E. x ( x 
 C_  B  /\  A  =  U. x ) ) )
 
Theoremtgval3 14378* Alternate expression for the topology generated by a basis. Lemma 2.1 of [Munkres] p. 80. See also tgval 12964 and tgval2 14371. (Contributed by NM, 17-Jul-2006.) (Revised by Mario Carneiro, 30-Aug-2015.)
 |-  ( B  e.  V  ->  ( topGen `  B )  =  { x  |  E. y ( y  C_  B  /\  x  =  U. y ) } )
 
Theoremtg1 14379 Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
 |-  ( A  e.  ( topGen `
  B )  ->  A  C_  U. B )
 
Theoremtg2 14380* Property of a member of a topology generated by a basis. (Contributed by NM, 20-Jul-2006.)
 |-  ( ( A  e.  ( topGen `  B )  /\  C  e.  A ) 
 ->  E. x  e.  B  ( C  e.  x  /\  x  C_  A ) )
 
Theorembastg 14381 A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.)
 |-  ( B  e.  V  ->  B  C_  ( topGen `  B ) )
 
Theoremunitg 14382 The topology generated by a basis 
B is a topology on 
U. B. Importantly, this theorem means that we don't have to specify separately the base set for the topological space generated by a basis. In other words, any member of the class  TopBases completely specifies the basis it corresponds to. (Contributed by NM, 16-Jul-2006.) (Proof shortened by OpenAI, 30-Mar-2020.)
 |-  ( B  e.  V  ->  U. ( topGen `  B )  =  U. B )
 
Theoremtgss 14383 Subset relation for generated topologies. (Contributed by NM, 7-May-2007.)
 |-  ( ( C  e.  V  /\  B  C_  C )  ->  ( topGen `  B )  C_  ( topGen `  C ) )
 
Theoremtgcl 14384 Show that a basis generates a topology. Remark in [Munkres] p. 79. (Contributed by NM, 17-Jul-2006.)
 |-  ( B  e.  TopBases  ->  (
 topGen `  B )  e. 
 Top )
 
Theoremtgclb 14385 The property tgcl 14384 can be reversed: if the topology generated by  B is actually a topology, then 
B must be a topological basis. This yields an alternative definition of  TopBases. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  ( B  e.  TopBases  <->  ( topGen `  B )  e.  Top )
 
Theoremtgtopon 14386 A basis generates a topology on 
U. B. (Contributed by Mario Carneiro, 14-Aug-2015.)
 |-  ( B  e.  TopBases  ->  (
 topGen `  B )  e.  (TopOn `  U. B ) )
 
Theoremtopbas 14387 A topology is its own basis. (Contributed by NM, 17-Jul-2006.)
 |-  ( J  e.  Top  ->  J  e.  TopBases )
 
Theoremtgtop 14388 A topology is its own basis. (Contributed by NM, 18-Jul-2006.)
 |-  ( J  e.  Top  ->  ( topGen `  J )  =  J )
 
Theoremeltop 14389 Membership in a topology, expressed without quantifiers. (Contributed by NM, 19-Jul-2006.)
 |-  ( J  e.  Top  ->  ( A  e.  J  <->  A 
 C_  U. ( J  i^i  ~P A ) ) )
 
Theoremeltop2 14390* Membership in a topology. (Contributed by NM, 19-Jul-2006.)
 |-  ( J  e.  Top  ->  ( A  e.  J  <->  A. x  e.  A  E. y  e.  J  ( x  e.  y  /\  y  C_  A ) ) )
 
Theoremeltop3 14391* Membership in a topology. (Contributed by NM, 19-Jul-2006.)
 |-  ( J  e.  Top  ->  ( A  e.  J  <->  E. x ( x  C_  J  /\  A  =  U. x ) ) )
 
Theoremtgdom 14392 A space has no more open sets than subsets of a basis. (Contributed by Stefan O'Rear, 22-Feb-2015.) (Revised by Mario Carneiro, 9-Apr-2015.)
 |-  ( B  e.  V  ->  ( topGen `  B )  ~<_  ~P B )
 
Theoremtgiun 14393* The indexed union of a set of basic open sets is in the generated topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( B  e.  V  /\  A. x  e.  A  C  e.  B )  ->  U_ x  e.  A  C  e.  ( topGen `  B ) )
 
Theoremtgidm 14394 The topology generator function is idempotent. (Contributed by NM, 18-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
 |-  ( B  e.  V  ->  ( topGen `  ( topGen `  B ) )  =  ( topGen `
  B ) )
 
Theorembastop 14395 Two ways to express that a basis is a topology. (Contributed by NM, 18-Jul-2006.)
 |-  ( B  e.  TopBases  ->  ( B  e.  Top  <->  ( topGen `  B )  =  B )
 )
 
Theoremtgtop11 14396 The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.)
 |-  ( ( J  e.  Top  /\  K  e.  Top  /\  ( topGen `  J )  =  ( topGen `  K )
 )  ->  J  =  K )
 
Theoremen1top 14397  { (/) } is the only topology with one element. (Contributed by FL, 18-Aug-2008.)
 |-  ( J  e.  Top  ->  ( J  ~~  1o  <->  J  =  { (/)
 } ) )
 
Theoremtgss3 14398 A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( B  e.  V  /\  C  e.  W )  ->  ( ( topGen `  B )  C_  ( topGen `  C )  <->  B  C_  ( topGen `  C ) ) )
 
Theoremtgss2 14399* A criterion for determining whether one topology is finer than another, based on a comparison of their bases. Lemma 2.2 of [Munkres] p. 80. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( B  e.  V  /\  U. B  =  U. C )  ->  (
 ( topGen `  B )  C_  ( topGen `  C )  <->  A. x  e.  U. B A. y  e.  B  ( x  e.  y  ->  E. z  e.  C  ( x  e.  z  /\  z  C_  y ) ) ) )
 
Theorembasgen 14400 Given a topology  J, show that a subset  B satisfying the third antecedent is a basis for it. Lemma 2.3 of [Munkres] p. 81 using abbreviations. (Contributed by NM, 22-Jul-2006.) (Revised by Mario Carneiro, 2-Sep-2015.)
 |-  ( ( J  e.  Top  /\  B  C_  J  /\  J  C_  ( topGen `  B ) )  ->  ( topGen `  B )  =  J )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >