ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psraddcl Unicode version

Theorem psraddcl 14442
Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psraddcl.s  |-  S  =  ( I mPwSer  R )
psraddcl.b  |-  B  =  ( Base `  S
)
psraddcl.p  |-  .+  =  ( +g  `  S )
psraddcl.r  |-  ( ph  ->  R  e. Mgm )
psraddcl.x  |-  ( ph  ->  X  e.  B )
psraddcl.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
psraddcl  |-  ( ph  ->  ( X  .+  Y
)  e.  B )

Proof of Theorem psraddcl
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psraddcl.r . . . . 5  |-  ( ph  ->  R  e. Mgm )
2 eqid 2205 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
3 eqid 2205 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
42, 3mgmcl 13191 . . . . . 6  |-  ( ( R  e. Mgm  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( +g  `  R ) y )  e.  (
Base `  R )
)
543expb 1207 . . . . 5  |-  ( ( R  e. Mgm  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( +g  `  R ) y )  e.  ( Base `  R
) )
61, 5sylan 283 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  (
x ( +g  `  R
) y )  e.  ( Base `  R
) )
7 psraddcl.s . . . . 5  |-  S  =  ( I mPwSer  R )
8 eqid 2205 . . . . 5  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
9 psraddcl.b . . . . 5  |-  B  =  ( Base `  S
)
10 psraddcl.x . . . . 5  |-  ( ph  ->  X  e.  B )
117, 2, 8, 9, 10psrelbas 14437 . . . 4  |-  ( ph  ->  X : { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin } --> ( Base `  R ) )
12 psraddcl.y . . . . 5  |-  ( ph  ->  Y  e.  B )
137, 2, 8, 9, 12psrelbas 14437 . . . 4  |-  ( ph  ->  Y : { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin } --> ( Base `  R ) )
14 fnmap 6742 . . . . . 6  |-  ^m  Fn  ( _V  X.  _V )
15 nn0ex 9301 . . . . . 6  |-  NN0  e.  _V
16 reldmpsr 14427 . . . . . . . . 9  |-  Rel  dom mPwSer
17 fnpsr 14429 . . . . . . . . . 10  |- mPwSer  Fn  ( _V  X.  _V )
18 fnrel 5372 . . . . . . . . . 10  |-  ( mPwSer  Fn  ( _V  X.  _V )  ->  Rel mPwSer  )
1917, 18ax-mp 5 . . . . . . . . 9  |-  Rel mPwSer
2016, 19, 7, 9relelbasov 12894 . . . . . . . 8  |-  ( X  e.  B  ->  (
I  e.  _V  /\  R  e.  _V )
)
2110, 20syl 14 . . . . . . 7  |-  ( ph  ->  ( I  e.  _V  /\  R  e.  _V )
)
2221simpld 112 . . . . . 6  |-  ( ph  ->  I  e.  _V )
23 fnovex 5977 . . . . . 6  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  NN0  e.  _V  /\  I  e. 
_V )  ->  ( NN0  ^m  I )  e. 
_V )
2414, 15, 22, 23mp3an12i 1354 . . . . 5  |-  ( ph  ->  ( NN0  ^m  I
)  e.  _V )
25 rabexg 4187 . . . . 5  |-  ( ( NN0  ^m  I )  e.  _V  ->  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V )
2624, 25syl 14 . . . 4  |-  ( ph  ->  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  e.  _V )
27 inidm 3382 . . . 4  |-  ( { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  i^i  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  =  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }
286, 11, 13, 26, 26, 27off 6171 . . 3  |-  ( ph  ->  ( X  oF ( +g  `  R
) Y ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  R
) )
29 basfn 12890 . . . . 5  |-  Base  Fn  _V
301elexd 2785 . . . . 5  |-  ( ph  ->  R  e.  _V )
31 funfvex 5593 . . . . . 6  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
3231funfni 5376 . . . . 5  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
3329, 30, 32sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  R
)  e.  _V )
3433, 26elmapd 6749 . . 3  |-  ( ph  ->  ( ( X  oF ( +g  `  R
) Y )  e.  ( ( Base `  R
)  ^m  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  <-> 
( X  oF ( +g  `  R
) Y ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  R
) ) )
3528, 34mpbird 167 . 2  |-  ( ph  ->  ( X  oF ( +g  `  R
) Y )  e.  ( ( Base `  R
)  ^m  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } ) )
36 psraddcl.p . . 3  |-  .+  =  ( +g  `  S )
377, 9, 3, 36, 10, 12psradd 14441 . 2  |-  ( ph  ->  ( X  .+  Y
)  =  ( X  oF ( +g  `  R ) Y ) )
387, 2, 8, 9, 22, 1psrbasg 14436 . 2  |-  ( ph  ->  B  =  ( (
Base `  R )  ^m  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } ) )
3935, 37, 383eltr4d 2289 1  |-  ( ph  ->  ( X  .+  Y
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {crab 2488   _Vcvv 2772    X. cxp 4673   `'ccnv 4674   "cima 4678   Rel wrel 4680    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5944    oFcof 6156    ^m cmap 6735   Fincfn 6827   NNcn 9036   NN0cn0 9295   Basecbs 12832   +g cplusg 12909  Mgmcmgm 13186   mPwSer cmps 14423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-tp 3641  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-of 6158  df-1st 6226  df-2nd 6227  df-map 6737  df-ixp 6786  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-uz 9649  df-fz 10131  df-struct 12834  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-mulr 12923  df-sca 12925  df-vsca 12926  df-tset 12928  df-rest 13073  df-topn 13074  df-topgen 13092  df-pt 13093  df-mgm 13188  df-psr 14425
This theorem is referenced by:  mplsubgfilemcl  14461
  Copyright terms: Public domain W3C validator