ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psraddcl Unicode version

Theorem psraddcl 14557
Description: Closure of the power series addition operation. (Contributed by Mario Carneiro, 28-Dec-2014.) Generalize to magmas. (Revised by SN, 12-Apr-2025.)
Hypotheses
Ref Expression
psraddcl.s  |-  S  =  ( I mPwSer  R )
psraddcl.b  |-  B  =  ( Base `  S
)
psraddcl.p  |-  .+  =  ( +g  `  S )
psraddcl.r  |-  ( ph  ->  R  e. Mgm )
psraddcl.x  |-  ( ph  ->  X  e.  B )
psraddcl.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
psraddcl  |-  ( ph  ->  ( X  .+  Y
)  e.  B )

Proof of Theorem psraddcl
Dummy variables  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psraddcl.r . . . . 5  |-  ( ph  ->  R  e. Mgm )
2 eqid 2207 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
3 eqid 2207 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
42, 3mgmcl 13306 . . . . . 6  |-  ( ( R  e. Mgm  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x
( +g  `  R ) y )  e.  (
Base `  R )
)
543expb 1207 . . . . 5  |-  ( ( R  e. Mgm  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  R
) ) )  -> 
( x ( +g  `  R ) y )  e.  ( Base `  R
) )
61, 5sylan 283 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  (
x ( +g  `  R
) y )  e.  ( Base `  R
) )
7 psraddcl.s . . . . 5  |-  S  =  ( I mPwSer  R )
8 eqid 2207 . . . . 5  |-  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  =  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }
9 psraddcl.b . . . . 5  |-  B  =  ( Base `  S
)
10 psraddcl.x . . . . 5  |-  ( ph  ->  X  e.  B )
117, 2, 8, 9, 10psrelbas 14552 . . . 4  |-  ( ph  ->  X : { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin } --> ( Base `  R ) )
12 psraddcl.y . . . . 5  |-  ( ph  ->  Y  e.  B )
137, 2, 8, 9, 12psrelbas 14552 . . . 4  |-  ( ph  ->  Y : { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin } --> ( Base `  R ) )
14 fnmap 6765 . . . . . 6  |-  ^m  Fn  ( _V  X.  _V )
15 nn0ex 9336 . . . . . 6  |-  NN0  e.  _V
16 reldmpsr 14542 . . . . . . . . 9  |-  Rel  dom mPwSer
17 fnpsr 14544 . . . . . . . . . 10  |- mPwSer  Fn  ( _V  X.  _V )
18 fnrel 5391 . . . . . . . . . 10  |-  ( mPwSer  Fn  ( _V  X.  _V )  ->  Rel mPwSer  )
1917, 18ax-mp 5 . . . . . . . . 9  |-  Rel mPwSer
2016, 19, 7, 9relelbasov 13009 . . . . . . . 8  |-  ( X  e.  B  ->  (
I  e.  _V  /\  R  e.  _V )
)
2110, 20syl 14 . . . . . . 7  |-  ( ph  ->  ( I  e.  _V  /\  R  e.  _V )
)
2221simpld 112 . . . . . 6  |-  ( ph  ->  I  e.  _V )
23 fnovex 6000 . . . . . 6  |-  ( (  ^m  Fn  ( _V 
X.  _V )  /\  NN0  e.  _V  /\  I  e. 
_V )  ->  ( NN0  ^m  I )  e. 
_V )
2414, 15, 22, 23mp3an12i 1354 . . . . 5  |-  ( ph  ->  ( NN0  ^m  I
)  e.  _V )
25 rabexg 4203 . . . . 5  |-  ( ( NN0  ^m  I )  e.  _V  ->  { f  e.  ( NN0  ^m  I )  |  ( `' f " NN )  e.  Fin }  e.  _V )
2624, 25syl 14 . . . 4  |-  ( ph  ->  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin }  e.  _V )
27 inidm 3390 . . . 4  |-  ( { f  e.  ( NN0 
^m  I )  |  ( `' f " NN )  e.  Fin }  i^i  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  =  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin }
286, 11, 13, 26, 26, 27off 6194 . . 3  |-  ( ph  ->  ( X  oF ( +g  `  R
) Y ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  R
) )
29 basfn 13005 . . . . 5  |-  Base  Fn  _V
301elexd 2790 . . . . 5  |-  ( ph  ->  R  e.  _V )
31 funfvex 5616 . . . . . 6  |-  ( ( Fun  Base  /\  R  e. 
dom  Base )  ->  ( Base `  R )  e. 
_V )
3231funfni 5395 . . . . 5  |-  ( (
Base  Fn  _V  /\  R  e.  _V )  ->  ( Base `  R )  e. 
_V )
3329, 30, 32sylancr 414 . . . 4  |-  ( ph  ->  ( Base `  R
)  e.  _V )
3433, 26elmapd 6772 . . 3  |-  ( ph  ->  ( ( X  oF ( +g  `  R
) Y )  e.  ( ( Base `  R
)  ^m  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } )  <-> 
( X  oF ( +g  `  R
) Y ) : { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } --> ( Base `  R
) ) )
3528, 34mpbird 167 . 2  |-  ( ph  ->  ( X  oF ( +g  `  R
) Y )  e.  ( ( Base `  R
)  ^m  { f  e.  ( NN0  ^m  I
)  |  ( `' f " NN )  e.  Fin } ) )
36 psraddcl.p . . 3  |-  .+  =  ( +g  `  S )
377, 9, 3, 36, 10, 12psradd 14556 . 2  |-  ( ph  ->  ( X  .+  Y
)  =  ( X  oF ( +g  `  R ) Y ) )
387, 2, 8, 9, 22, 1psrbasg 14551 . 2  |-  ( ph  ->  B  =  ( (
Base `  R )  ^m  { f  e.  ( NN0  ^m  I )  |  ( `' f
" NN )  e. 
Fin } ) )
3935, 37, 383eltr4d 2291 1  |-  ( ph  ->  ( X  .+  Y
)  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {crab 2490   _Vcvv 2776    X. cxp 4691   `'ccnv 4692   "cima 4696   Rel wrel 4698    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967    oFcof 6179    ^m cmap 6758   Fincfn 6850   NNcn 9071   NN0cn0 9330   Basecbs 12947   +g cplusg 13024  Mgmcmgm 13301   mPwSer cmps 14538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-of 6181  df-1st 6249  df-2nd 6250  df-map 6760  df-ixp 6809  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-5 9133  df-6 9134  df-7 9135  df-8 9136  df-9 9137  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-struct 12949  df-ndx 12950  df-slot 12951  df-base 12953  df-plusg 13037  df-mulr 13038  df-sca 13040  df-vsca 13041  df-tset 13043  df-rest 13188  df-topn 13189  df-topgen 13207  df-pt 13208  df-mgm 13303  df-psr 14540
This theorem is referenced by:  mplsubgfilemcl  14576
  Copyright terms: Public domain W3C validator