ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdomi Unicode version

Theorem brdomi 6466
Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brdomi  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
Distinct variable groups:    A, f    B, f

Proof of Theorem brdomi
StepHypRef Expression
1 reldom 6462 . . . 4  |-  Rel  ~<_
21brrelex2i 4482 . . 3  |-  ( A  ~<_  B  ->  B  e.  _V )
3 brdomg 6465 . . 3  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
42, 3syl 14 . 2  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. f  f : A -1-1-> B ) )
54ibi 174 1  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103   E.wex 1426    e. wcel 1438   _Vcvv 2619   class class class wbr 3845   -1-1->wf1 5012    ~<_ cdom 6456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-xp 4444  df-rel 4445  df-cnv 4446  df-dm 4448  df-rn 4449  df-fn 5018  df-f 5019  df-f1 5020  df-dom 6459
This theorem is referenced by:  ctex  6470  2dom  6522  xpdom2  6547  dom0  6554  isinfinf  6613  infm  6620  djudom  6787  exmidfodomrlemim  6827
  Copyright terms: Public domain W3C validator