ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  brdomi Unicode version

Theorem brdomi 6817
Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
brdomi  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
Distinct variable groups:    A, f    B, f

Proof of Theorem brdomi
StepHypRef Expression
1 reldom 6813 . . . 4  |-  Rel  ~<_
21brrelex2i 4708 . . 3  |-  ( A  ~<_  B  ->  B  e.  _V )
3 brdomg 6816 . . 3  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
42, 3syl 14 . 2  |-  ( A  ~<_  B  ->  ( A  ~<_  B 
<->  E. f  f : A -1-1-> B ) )
54ibi 176 1  |-  ( A  ~<_  B  ->  E. f 
f : A -1-1-> B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   E.wex 1506    e. wcel 2167   _Vcvv 2763   class class class wbr 4034   -1-1->wf1 5256    ~<_ cdom 6807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-dm 4674  df-rn 4675  df-fn 5262  df-f 5263  df-f1 5264  df-dom 6810
This theorem is referenced by:  2dom  6873  xpdom2  6899  dom0  6908  isinfinf  6967  infm  6974  djudom  7168  difinfsn  7175  exmidfodomrlemim  7280  1dom1el  15721  domomsubct  15732
  Copyright terms: Public domain W3C validator