ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdom1g Unicode version

Theorem xpdom1g 6878
Description: Dominance law for Cartesian product. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 25-Mar-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
xpdom1g  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~<_  ( B  X.  C ) )

Proof of Theorem xpdom1g
StepHypRef Expression
1 reldom 6790 . . . 4  |-  Rel  ~<_
21brrelex1i 4698 . . 3  |-  ( A  ~<_  B  ->  A  e.  _V )
3 xpcomeng 6873 . . . 4  |-  ( ( A  e.  _V  /\  C  e.  V )  ->  ( A  X.  C
)  ~~  ( C  X.  A ) )
43ancoms 268 . . 3  |-  ( ( C  e.  V  /\  A  e.  _V )  ->  ( A  X.  C
)  ~~  ( C  X.  A ) )
52, 4sylan2 286 . 2  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~~  ( C  X.  A ) )
6 xpdom2g 6877 . . 3  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( C  X.  B ) )
71brrelex2i 4699 . . . 4  |-  ( A  ~<_  B  ->  B  e.  _V )
8 xpcomeng 6873 . . . 4  |-  ( ( C  e.  V  /\  B  e.  _V )  ->  ( C  X.  B
)  ~~  ( B  X.  C ) )
97, 8sylan2 286 . . 3  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  B
)  ~~  ( B  X.  C ) )
10 domentr 6836 . . 3  |-  ( ( ( C  X.  A
)  ~<_  ( C  X.  B )  /\  ( C  X.  B )  ~~  ( B  X.  C
) )  ->  ( C  X.  A )  ~<_  ( B  X.  C ) )
116, 9, 10syl2anc 411 . 2  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( C  X.  A
)  ~<_  ( B  X.  C ) )
12 endomtr 6835 . 2  |-  ( ( ( A  X.  C
)  ~~  ( C  X.  A )  /\  ( C  X.  A )  ~<_  ( B  X.  C ) )  ->  ( A  X.  C )  ~<_  ( B  X.  C ) )
135, 11, 12syl2anc 411 1  |-  ( ( C  e.  V  /\  A  ~<_  B )  -> 
( A  X.  C
)  ~<_  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2164   _Vcvv 2760   class class class wbr 4029    X. cxp 4653    ~~ cen 6783    ~<_ cdom 6784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4462
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4322  df-xp 4661  df-rel 4662  df-cnv 4663  df-co 4664  df-dm 4665  df-rn 4666  df-res 4667  df-ima 4668  df-iota 5207  df-fun 5248  df-fn 5249  df-f 5250  df-f1 5251  df-fo 5252  df-f1o 5253  df-fv 5254  df-1st 6184  df-2nd 6185  df-en 6786  df-dom 6787
This theorem is referenced by:  xpdom1  6880  xpct  12543
  Copyright terms: Public domain W3C validator