ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funresdfunsnss Unicode version

Theorem funresdfunsnss 5699
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in a subset of the function itself. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 21-Jan-2023.)
Assertion
Ref Expression
funresdfunsnss  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)

Proof of Theorem funresdfunsnss
StepHypRef Expression
1 funrel 5215 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
2 resdmdfsn 4934 . . . . 5  |-  ( Rel 
F  ->  ( F  |`  ( _V  \  { X } ) )  =  ( F  |`  ( dom  F  \  { X } ) ) )
31, 2syl 14 . . . 4  |-  ( Fun 
F  ->  ( F  |`  ( _V  \  { X } ) )  =  ( F  |`  ( dom  F  \  { X } ) ) )
43adantr 274 . . 3  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( F  |`  ( _V  \  { X }
) )  =  ( F  |`  ( dom  F 
\  { X }
) ) )
54uneq1d 3280 . 2  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  =  ( ( F  |`  ( dom  F  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
6 funfn 5228 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
7 fnsnsplitss 5695 . . 3  |-  ( ( F  Fn  dom  F  /\  X  e.  dom  F )  ->  ( ( F  |`  ( dom  F  \  { X } ) )  u.  { <. X ,  ( F `  X ) >. } ) 
C_  F )
86, 7sylanb 282 . 2  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F  |`  ( dom  F  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)
95, 8eqsstrd 3183 1  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   _Vcvv 2730    \ cdif 3118    u. cun 3119    C_ wss 3121   {csn 3583   <.cop 3586   dom cdm 4611    |` cres 4613   Rel wrel 4616   Fun wfun 5192    Fn wfn 5193   ` cfv 5198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator