ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funresdfunsnss Unicode version

Theorem funresdfunsnss 5735
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in a subset of the function itself. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 21-Jan-2023.)
Assertion
Ref Expression
funresdfunsnss  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)

Proof of Theorem funresdfunsnss
StepHypRef Expression
1 funrel 5248 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
2 resdmdfsn 4965 . . . . 5  |-  ( Rel 
F  ->  ( F  |`  ( _V  \  { X } ) )  =  ( F  |`  ( dom  F  \  { X } ) ) )
31, 2syl 14 . . . 4  |-  ( Fun 
F  ->  ( F  |`  ( _V  \  { X } ) )  =  ( F  |`  ( dom  F  \  { X } ) ) )
43adantr 276 . . 3  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( F  |`  ( _V  \  { X }
) )  =  ( F  |`  ( dom  F 
\  { X }
) ) )
54uneq1d 3303 . 2  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  =  ( ( F  |`  ( dom  F  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
6 funfn 5261 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
7 fnsnsplitss 5731 . . 3  |-  ( ( F  Fn  dom  F  /\  X  e.  dom  F )  ->  ( ( F  |`  ( dom  F  \  { X } ) )  u.  { <. X ,  ( F `  X ) >. } ) 
C_  F )
86, 7sylanb 284 . 2  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F  |`  ( dom  F  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)
95, 8eqsstrd 3206 1  |-  ( ( Fun  F  /\  X  e.  dom  F )  -> 
( ( F  |`  ( _V  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } )  C_  F
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752    \ cdif 3141    u. cun 3142    C_ wss 3144   {csn 3607   <.cop 3610   dom cdm 4641    |` cres 4643   Rel wrel 4646   Fun wfun 5225    Fn wfn 5226   ` cfv 5231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator