ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funresdfunsndc Unicode version

Theorem funresdfunsndc 6497
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.)
Assertion
Ref Expression
funresdfunsndc  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun  F  /\  X  e.  dom  F )  ->  ( ( F  |`  ( _V  \  { X } ) )  u.  { <. X , 
( F `  X
) >. } )  =  F )
Distinct variable groups:    x, F, y   
x, X, y

Proof of Theorem funresdfunsndc
StepHypRef Expression
1 funrel 5225 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
2 resdmdfsn 4943 . . . . 5  |-  ( Rel 
F  ->  ( F  |`  ( _V  \  { X } ) )  =  ( F  |`  ( dom  F  \  { X } ) ) )
31, 2syl 14 . . . 4  |-  ( Fun 
F  ->  ( F  |`  ( _V  \  { X } ) )  =  ( F  |`  ( dom  F  \  { X } ) ) )
433ad2ant2 1019 . . 3  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun  F  /\  X  e.  dom  F )  ->  ( F  |`  ( _V  \  { X } ) )  =  ( F  |`  ( dom  F  \  { X } ) ) )
54uneq1d 3286 . 2  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun  F  /\  X  e.  dom  F )  ->  ( ( F  |`  ( _V  \  { X } ) )  u.  { <. X , 
( F `  X
) >. } )  =  ( ( F  |`  ( dom  F  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
6 funfn 5238 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
7 fnsnsplitdc 6496 . . 3  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  F  Fn  dom  F  /\  X  e.  dom  F )  ->  F  =  ( ( F  |`  ( dom  F  \  { X } ) )  u.  { <. X ,  ( F `  X ) >. } ) )
86, 7syl3an2b 1275 . 2  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun  F  /\  X  e.  dom  F )  ->  F  =  ( ( F  |`  ( dom  F  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
95, 8eqtr4d 2211 1  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun  F  /\  X  e.  dom  F )  ->  ( ( F  |`  ( _V  \  { X } ) )  u.  { <. X , 
( F `  X
) >. } )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 834    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   _Vcvv 2735    \ cdif 3124    u. cun 3125   {csn 3589   <.cop 3592   dom cdm 4620    |` cres 4622   Rel wrel 4625   Fun wfun 5202    Fn wfn 5203   ` cfv 5208
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216
This theorem is referenced by:  strsetsid  12460
  Copyright terms: Public domain W3C validator