Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funresdfunsndc | Unicode version |
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
funresdfunsndc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5215 | . . . . 5 | |
2 | resdmdfsn 4934 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | 3 | 3ad2ant2 1014 | . . 3 DECID |
5 | 4 | uneq1d 3280 | . 2 DECID |
6 | funfn 5228 | . . 3 | |
7 | fnsnsplitdc 6484 | . . 3 DECID | |
8 | 6, 7 | syl3an2b 1270 | . 2 DECID |
9 | 5, 8 | eqtr4d 2206 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 DECID wdc 829 w3a 973 wceq 1348 wcel 2141 wral 2448 cvv 2730 cdif 3118 cun 3119 csn 3583 cop 3586 cdm 4611 cres 4613 wrel 4616 wfun 5192 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: strsetsid 12449 |
Copyright terms: Public domain | W3C validator |