ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funresdfunsndc Unicode version

Theorem funresdfunsndc 6594
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.)
Assertion
Ref Expression
funresdfunsndc  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun  F  /\  X  e.  dom  F )  ->  ( ( F  |`  ( _V  \  { X } ) )  u.  { <. X , 
( F `  X
) >. } )  =  F )
Distinct variable groups:    x, F, y   
x, X, y

Proof of Theorem funresdfunsndc
StepHypRef Expression
1 funrel 5289 . . . . 5  |-  ( Fun 
F  ->  Rel  F )
2 resdmdfsn 5003 . . . . 5  |-  ( Rel 
F  ->  ( F  |`  ( _V  \  { X } ) )  =  ( F  |`  ( dom  F  \  { X } ) ) )
31, 2syl 14 . . . 4  |-  ( Fun 
F  ->  ( F  |`  ( _V  \  { X } ) )  =  ( F  |`  ( dom  F  \  { X } ) ) )
433ad2ant2 1022 . . 3  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun  F  /\  X  e.  dom  F )  ->  ( F  |`  ( _V  \  { X } ) )  =  ( F  |`  ( dom  F  \  { X } ) ) )
54uneq1d 3326 . 2  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun  F  /\  X  e.  dom  F )  ->  ( ( F  |`  ( _V  \  { X } ) )  u.  { <. X , 
( F `  X
) >. } )  =  ( ( F  |`  ( dom  F  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
6 funfn 5302 . . 3  |-  ( Fun 
F  <->  F  Fn  dom  F )
7 fnsnsplitdc 6593 . . 3  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  F  Fn  dom  F  /\  X  e.  dom  F )  ->  F  =  ( ( F  |`  ( dom  F  \  { X } ) )  u.  { <. X ,  ( F `  X ) >. } ) )
86, 7syl3an2b 1287 . 2  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun  F  /\  X  e.  dom  F )  ->  F  =  ( ( F  |`  ( dom  F  \  { X } ) )  u. 
{ <. X ,  ( F `  X )
>. } ) )
95, 8eqtr4d 2241 1  |-  ( ( A. x  e.  dom  F A. y  e.  dom  FDECID  x  =  y  /\  Fun  F  /\  X  e.  dom  F )  ->  ( ( F  |`  ( _V  \  { X } ) )  u.  { <. X , 
( F `  X
) >. } )  =  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 836    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    \ cdif 3163    u. cun 3164   {csn 3633   <.cop 3636   dom cdm 4676    |` cres 4678   Rel wrel 4681   Fun wfun 5266    Fn wfn 5267   ` cfv 5272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280
This theorem is referenced by:  strsetsid  12898
  Copyright terms: Public domain W3C validator