Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funresdfunsndc | Unicode version |
Description: Restricting a function to a domain without one element of the domain of the function, and adding a pair of this element and the function value of the element results in the function itself, where equality is decidable. (Contributed by AV, 2-Dec-2018.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
funresdfunsndc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funrel 5225 | . . . . 5 | |
2 | resdmdfsn 4943 | . . . . 5 | |
3 | 1, 2 | syl 14 | . . . 4 |
4 | 3 | 3ad2ant2 1019 | . . 3 DECID |
5 | 4 | uneq1d 3286 | . 2 DECID |
6 | funfn 5238 | . . 3 | |
7 | fnsnsplitdc 6496 | . . 3 DECID | |
8 | 6, 7 | syl3an2b 1275 | . 2 DECID |
9 | 5, 8 | eqtr4d 2211 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 DECID wdc 834 w3a 978 wceq 1353 wcel 2146 wral 2453 cvv 2735 cdif 3124 cun 3125 csn 3589 cop 3592 cdm 4620 cres 4622 wrel 4625 wfun 5202 wfn 5203 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 |
This theorem is referenced by: strsetsid 12460 |
Copyright terms: Public domain | W3C validator |