![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resima | GIF version |
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.) |
Ref | Expression |
---|---|
resima | ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | residm 4978 | . . 3 ⊢ ((𝐴 ↾ 𝐵) ↾ 𝐵) = (𝐴 ↾ 𝐵) | |
2 | 1 | rneqi 4894 | . 2 ⊢ ran ((𝐴 ↾ 𝐵) ↾ 𝐵) = ran (𝐴 ↾ 𝐵) |
3 | df-ima 4676 | . 2 ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = ran ((𝐴 ↾ 𝐵) ↾ 𝐵) | |
4 | df-ima 4676 | . 2 ⊢ (𝐴 “ 𝐵) = ran (𝐴 ↾ 𝐵) | |
5 | 2, 3, 4 | 3eqtr4i 2227 | 1 ⊢ ((𝐴 ↾ 𝐵) “ 𝐵) = (𝐴 “ 𝐵) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ran crn 4664 ↾ cres 4665 “ cima 4666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 |
This theorem is referenced by: isarep2 5345 f1imacnv 5521 foimacnv 5522 djudm 7169 suplocexprlemell 7778 elq 9693 qnnen 12624 |
Copyright terms: Public domain | W3C validator |