ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resima GIF version

Theorem resima 4979
Description: A restriction to an image. (Contributed by NM, 29-Sep-2004.)
Assertion
Ref Expression
resima ((𝐴𝐵) “ 𝐵) = (𝐴𝐵)

Proof of Theorem resima
StepHypRef Expression
1 residm 4978 . . 3 ((𝐴𝐵) ↾ 𝐵) = (𝐴𝐵)
21rneqi 4894 . 2 ran ((𝐴𝐵) ↾ 𝐵) = ran (𝐴𝐵)
3 df-ima 4676 . 2 ((𝐴𝐵) “ 𝐵) = ran ((𝐴𝐵) ↾ 𝐵)
4 df-ima 4676 . 2 (𝐴𝐵) = ran (𝐴𝐵)
52, 3, 43eqtr4i 2227 1 ((𝐴𝐵) “ 𝐵) = (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:   = wceq 1364  ran crn 4664  cres 4665  cima 4666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676
This theorem is referenced by:  isarep2  5345  f1imacnv  5521  foimacnv  5522  djudm  7169  suplocexprlemell  7778  elq  9693  qnnen  12624
  Copyright terms: Public domain W3C validator