ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudm Unicode version

Theorem djudm 7209
Description: The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
djudm  |-  dom  ( F ⊔d  G )  =  ( dom  F dom  G )

Proof of Theorem djudm
StepHypRef Expression
1 df-djud 7207 . . 3  |-  ( F ⊔d  G )  =  ( ( F  o.  `' (inl  |`  dom  F ) )  u.  ( G  o.  `' (inr  |`  dom  G
) ) )
21dmeqi 4880 . 2  |-  dom  ( F ⊔d  G )  =  dom  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) )
3 dmun 4886 . 2  |-  dom  (
( F  o.  `' (inl  |`  dom  F ) )  u.  ( G  o.  `' (inr  |`  dom  G
) ) )  =  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  u.  dom  ( G  o.  `' (inr  |`  dom  G ) ) )
4 dmco 5192 . . . . 5  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) )  =  ( `' `' (inl  |`  dom  F )
" dom  F )
5 imacnvcnv 5148 . . . . 5  |-  ( `' `' (inl  |`  dom  F
) " dom  F
)  =  ( (inl  |`  dom  F ) " dom  F )
6 resima 4993 . . . . . 6  |-  ( (inl  |`  dom  F ) " dom  F )  =  (inl " dom  F )
7 df-ima 4689 . . . . . 6  |-  (inl " dom  F )  =  ran  (inl  |`  dom  F )
86, 7eqtri 2226 . . . . 5  |-  ( (inl  |`  dom  F ) " dom  F )  =  ran  (inl  |`  dom  F )
94, 5, 83eqtri 2230 . . . 4  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) )  =  ran  (inl  |`  dom  F
)
10 dmco 5192 . . . . 5  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) )  =  ( `' `' (inr  |`  dom  G )
" dom  G )
11 imacnvcnv 5148 . . . . 5  |-  ( `' `' (inr  |`  dom  G
) " dom  G
)  =  ( (inr  |`  dom  G ) " dom  G )
12 resima 4993 . . . . . 6  |-  ( (inr  |`  dom  G ) " dom  G )  =  (inr " dom  G )
13 df-ima 4689 . . . . . 6  |-  (inr " dom  G )  =  ran  (inr  |`  dom  G )
1412, 13eqtri 2226 . . . . 5  |-  ( (inr  |`  dom  G ) " dom  G )  =  ran  (inr  |`  dom  G )
1510, 11, 143eqtri 2230 . . . 4  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) )  =  ran  (inr  |`  dom  G
)
169, 15uneq12i 3325 . . 3  |-  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  u.  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  ( ran  (inl  |`  dom  F )  u.  ran  (inr  |`  dom  G
) )
17 djuunr 7170 . . 3  |-  ( ran  (inl  |`  dom  F )  u.  ran  (inr  |`  dom  G
) )  =  ( dom  F dom  G )
1816, 17eqtri 2226 . 2  |-  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  u.  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  ( dom 
F dom  G )
192, 3, 183eqtri 2230 1  |-  dom  ( F ⊔d  G )  =  ( dom  F dom  G )
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3164   `'ccnv 4675   dom cdm 4676   ran crn 4677    |` cres 4678   "cima 4679    o. ccom 4680   ⊔ cdju 7141  inlcinl 7149  inrcinr 7150   ⊔d cdjud 7206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-suc 4419  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-1st 6228  df-2nd 6229  df-1o 6504  df-dju 7142  df-inl 7151  df-inr 7152  df-djud 7207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator