ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudm Unicode version

Theorem djudm 7166
Description: The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
djudm  |-  dom  ( F ⊔d  G )  =  ( dom  F dom  G )

Proof of Theorem djudm
StepHypRef Expression
1 df-djud 7164 . . 3  |-  ( F ⊔d  G )  =  ( ( F  o.  `' (inl  |`  dom  F ) )  u.  ( G  o.  `' (inr  |`  dom  G
) ) )
21dmeqi 4864 . 2  |-  dom  ( F ⊔d  G )  =  dom  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) )
3 dmun 4870 . 2  |-  dom  (
( F  o.  `' (inl  |`  dom  F ) )  u.  ( G  o.  `' (inr  |`  dom  G
) ) )  =  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  u.  dom  ( G  o.  `' (inr  |`  dom  G ) ) )
4 dmco 5175 . . . . 5  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) )  =  ( `' `' (inl  |`  dom  F )
" dom  F )
5 imacnvcnv 5131 . . . . 5  |-  ( `' `' (inl  |`  dom  F
) " dom  F
)  =  ( (inl  |`  dom  F ) " dom  F )
6 resima 4976 . . . . . 6  |-  ( (inl  |`  dom  F ) " dom  F )  =  (inl " dom  F )
7 df-ima 4673 . . . . . 6  |-  (inl " dom  F )  =  ran  (inl  |`  dom  F )
86, 7eqtri 2214 . . . . 5  |-  ( (inl  |`  dom  F ) " dom  F )  =  ran  (inl  |`  dom  F )
94, 5, 83eqtri 2218 . . . 4  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) )  =  ran  (inl  |`  dom  F
)
10 dmco 5175 . . . . 5  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) )  =  ( `' `' (inr  |`  dom  G )
" dom  G )
11 imacnvcnv 5131 . . . . 5  |-  ( `' `' (inr  |`  dom  G
) " dom  G
)  =  ( (inr  |`  dom  G ) " dom  G )
12 resima 4976 . . . . . 6  |-  ( (inr  |`  dom  G ) " dom  G )  =  (inr " dom  G )
13 df-ima 4673 . . . . . 6  |-  (inr " dom  G )  =  ran  (inr  |`  dom  G )
1412, 13eqtri 2214 . . . . 5  |-  ( (inr  |`  dom  G ) " dom  G )  =  ran  (inr  |`  dom  G )
1510, 11, 143eqtri 2218 . . . 4  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) )  =  ran  (inr  |`  dom  G
)
169, 15uneq12i 3312 . . 3  |-  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  u.  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  ( ran  (inl  |`  dom  F )  u.  ran  (inr  |`  dom  G
) )
17 djuunr 7127 . . 3  |-  ( ran  (inl  |`  dom  F )  u.  ran  (inr  |`  dom  G
) )  =  ( dom  F dom  G )
1816, 17eqtri 2214 . 2  |-  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  u.  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  ( dom 
F dom  G )
192, 3, 183eqtri 2218 1  |-  dom  ( F ⊔d  G )  =  ( dom  F dom  G )
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3152   `'ccnv 4659   dom cdm 4660   ran crn 4661    |` cres 4662   "cima 4663    o. ccom 4664   ⊔ cdju 7098  inlcinl 7106  inrcinr 7107   ⊔d cdjud 7163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109  df-djud 7164
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator