| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djudm | Unicode version | ||
| Description: The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.) |
| Ref | Expression |
|---|---|
| djudm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-djud 7207 |
. . 3
| |
| 2 | 1 | dmeqi 4880 |
. 2
|
| 3 | dmun 4886 |
. 2
| |
| 4 | dmco 5192 |
. . . . 5
| |
| 5 | imacnvcnv 5148 |
. . . . 5
| |
| 6 | resima 4993 |
. . . . . 6
| |
| 7 | df-ima 4689 |
. . . . . 6
| |
| 8 | 6, 7 | eqtri 2226 |
. . . . 5
|
| 9 | 4, 5, 8 | 3eqtri 2230 |
. . . 4
|
| 10 | dmco 5192 |
. . . . 5
| |
| 11 | imacnvcnv 5148 |
. . . . 5
| |
| 12 | resima 4993 |
. . . . . 6
| |
| 13 | df-ima 4689 |
. . . . . 6
| |
| 14 | 12, 13 | eqtri 2226 |
. . . . 5
|
| 15 | 10, 11, 14 | 3eqtri 2230 |
. . . 4
|
| 16 | 9, 15 | uneq12i 3325 |
. . 3
|
| 17 | djuunr 7170 |
. . 3
| |
| 18 | 16, 17 | eqtri 2226 |
. 2
|
| 19 | 2, 3, 18 | 3eqtri 2230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-1st 6228 df-2nd 6229 df-1o 6504 df-dju 7142 df-inl 7151 df-inr 7152 df-djud 7207 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |