ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djudm Unicode version

Theorem djudm 7272
Description: The domain of the "domain-disjoint-union" is the disjoint union of the domains. Remark: its range is the (standard) union of the ranges. (Contributed by BJ, 10-Jul-2022.)
Assertion
Ref Expression
djudm  |-  dom  ( F ⊔d  G )  =  ( dom  F dom  G )

Proof of Theorem djudm
StepHypRef Expression
1 df-djud 7270 . . 3  |-  ( F ⊔d  G )  =  ( ( F  o.  `' (inl  |`  dom  F ) )  u.  ( G  o.  `' (inr  |`  dom  G
) ) )
21dmeqi 4924 . 2  |-  dom  ( F ⊔d  G )  =  dom  ( ( F  o.  `' (inl  |`  dom  F
) )  u.  ( G  o.  `' (inr  |` 
dom  G ) ) )
3 dmun 4930 . 2  |-  dom  (
( F  o.  `' (inl  |`  dom  F ) )  u.  ( G  o.  `' (inr  |`  dom  G
) ) )  =  ( dom  ( F  o.  `' (inl  |`  dom  F
) )  u.  dom  ( G  o.  `' (inr  |`  dom  G ) ) )
4 dmco 5237 . . . . 5  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) )  =  ( `' `' (inl  |`  dom  F )
" dom  F )
5 imacnvcnv 5193 . . . . 5  |-  ( `' `' (inl  |`  dom  F
) " dom  F
)  =  ( (inl  |`  dom  F ) " dom  F )
6 resima 5038 . . . . . 6  |-  ( (inl  |`  dom  F ) " dom  F )  =  (inl " dom  F )
7 df-ima 4732 . . . . . 6  |-  (inl " dom  F )  =  ran  (inl  |`  dom  F )
86, 7eqtri 2250 . . . . 5  |-  ( (inl  |`  dom  F ) " dom  F )  =  ran  (inl  |`  dom  F )
94, 5, 83eqtri 2254 . . . 4  |-  dom  ( F  o.  `' (inl  |` 
dom  F ) )  =  ran  (inl  |`  dom  F
)
10 dmco 5237 . . . . 5  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) )  =  ( `' `' (inr  |`  dom  G )
" dom  G )
11 imacnvcnv 5193 . . . . 5  |-  ( `' `' (inr  |`  dom  G
) " dom  G
)  =  ( (inr  |`  dom  G ) " dom  G )
12 resima 5038 . . . . . 6  |-  ( (inr  |`  dom  G ) " dom  G )  =  (inr " dom  G )
13 df-ima 4732 . . . . . 6  |-  (inr " dom  G )  =  ran  (inr  |`  dom  G )
1412, 13eqtri 2250 . . . . 5  |-  ( (inr  |`  dom  G ) " dom  G )  =  ran  (inr  |`  dom  G )
1510, 11, 143eqtri 2254 . . . 4  |-  dom  ( G  o.  `' (inr  |` 
dom  G ) )  =  ran  (inr  |`  dom  G
)
169, 15uneq12i 3356 . . 3  |-  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  u.  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  ( ran  (inl  |`  dom  F )  u.  ran  (inr  |`  dom  G
) )
17 djuunr 7233 . . 3  |-  ( ran  (inl  |`  dom  F )  u.  ran  (inr  |`  dom  G
) )  =  ( dom  F dom  G )
1816, 17eqtri 2250 . 2  |-  ( dom  ( F  o.  `' (inl  |`  dom  F ) )  u.  dom  ( G  o.  `' (inr  |` 
dom  G ) ) )  =  ( dom 
F dom  G )
192, 3, 183eqtri 2254 1  |-  dom  ( F ⊔d  G )  =  ( dom  F dom  G )
Colors of variables: wff set class
Syntax hints:    = wceq 1395    u. cun 3195   `'ccnv 4718   dom cdm 4719   ran crn 4720    |` cres 4721   "cima 4722    o. ccom 4723   ⊔ cdju 7204  inlcinl 7212  inrcinr 7213   ⊔d cdjud 7269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-suc 4462  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-1st 6286  df-2nd 6287  df-1o 6562  df-dju 7205  df-inl 7214  df-inr 7215  df-djud 7270
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator