ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexfo Unicode version

Theorem cbvexfo 5754
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
Hypothesis
Ref Expression
cbvfo.1  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvexfo  |-  ( F : A -onto-> B  -> 
( E. x  e.  A  ph  <->  E. y  e.  B  ps )
)
Distinct variable groups:    x, y, A   
y, B    x, F, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    B( x)

Proof of Theorem cbvexfo
StepHypRef Expression
1 fofn 5412 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 cbvfo.1 . . . . . 6  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
32bicomd 140 . . . . 5  |-  ( ( F `  x )  =  y  ->  ( ps 
<-> 
ph ) )
43eqcoms 2168 . . . 4  |-  ( y  =  ( F `  x )  ->  ( ps 
<-> 
ph ) )
54rexrn 5622 . . 3  |-  ( F  Fn  A  ->  ( E. y  e.  ran  F ps  <->  E. x  e.  A  ph ) )
61, 5syl 14 . 2  |-  ( F : A -onto-> B  -> 
( E. y  e. 
ran  F ps  <->  E. x  e.  A  ph ) )
7 forn 5413 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
87rexeqdv 2668 . 2  |-  ( F : A -onto-> B  -> 
( E. y  e. 
ran  F ps  <->  E. y  e.  B  ps )
)
96, 8bitr3d 189 1  |-  ( F : A -onto-> B  -> 
( E. x  e.  A  ph  <->  E. y  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343   E.wrex 2445   ran crn 4605    Fn wfn 5183   -onto->wfo 5186   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator