ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexfo Unicode version

Theorem cbvexfo 5836
Description: Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
Hypothesis
Ref Expression
cbvfo.1  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvexfo  |-  ( F : A -onto-> B  -> 
( E. x  e.  A  ph  <->  E. y  e.  B  ps )
)
Distinct variable groups:    x, y, A   
y, B    x, F, y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)    B( x)

Proof of Theorem cbvexfo
StepHypRef Expression
1 fofn 5485 . . 3  |-  ( F : A -onto-> B  ->  F  Fn  A )
2 cbvfo.1 . . . . . 6  |-  ( ( F `  x )  =  y  ->  ( ph 
<->  ps ) )
32bicomd 141 . . . . 5  |-  ( ( F `  x )  =  y  ->  ( ps 
<-> 
ph ) )
43eqcoms 2199 . . . 4  |-  ( y  =  ( F `  x )  ->  ( ps 
<-> 
ph ) )
54rexrn 5702 . . 3  |-  ( F  Fn  A  ->  ( E. y  e.  ran  F ps  <->  E. x  e.  A  ph ) )
61, 5syl 14 . 2  |-  ( F : A -onto-> B  -> 
( E. y  e. 
ran  F ps  <->  E. x  e.  A  ph ) )
7 forn 5486 . . 3  |-  ( F : A -onto-> B  ->  ran  F  =  B )
87rexeqdv 2700 . 2  |-  ( F : A -onto-> B  -> 
( E. y  e. 
ran  F ps  <->  E. y  e.  B  ps )
)
96, 8bitr3d 190 1  |-  ( F : A -onto-> B  -> 
( E. x  e.  A  ph  <->  E. y  e.  B  ps )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   E.wrex 2476   ran crn 4665    Fn wfn 5254   -onto->wfo 5257   ` cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator