ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsrpropdg Unicode version

Theorem dvdsrpropdg 13779
Description: The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
dvdsrpropdg.1  |-  ( ph  ->  B  =  ( Base `  K ) )
dvdsrpropdg.2  |-  ( ph  ->  B  =  ( Base `  L ) )
dvdsrpropdg.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
dvdsrpropdg.k  |-  ( ph  ->  K  e. SRing )
dvdsrpropdg.l  |-  ( ph  ->  L  e. SRing )
Assertion
Ref Expression
dvdsrpropdg  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 L ) )
Distinct variable groups:    x, y, B   
x, K, y    x, L, y    ph, x, y

Proof of Theorem dvdsrpropdg
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 dvdsrpropdg.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
21anassrs 400 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  B )  ->  (
x ( .r `  K ) y )  =  ( x ( .r `  L ) y ) )
32eqeq1d 2205 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  B )  /\  y  e.  B )  ->  (
( x ( .r
`  K ) y )  =  z  <->  ( x
( .r `  L
) y )  =  z ) )
43an32s 568 . . . . . 6  |-  ( ( ( ph  /\  y  e.  B )  /\  x  e.  B )  ->  (
( x ( .r
`  K ) y )  =  z  <->  ( x
( .r `  L
) y )  =  z ) )
54rexbidva 2494 . . . . 5  |-  ( (
ph  /\  y  e.  B )  ->  ( E. x  e.  B  ( x ( .r
`  K ) y )  =  z  <->  E. x  e.  B  ( x
( .r `  L
) y )  =  z ) )
65pm5.32da 452 . . . 4  |-  ( ph  ->  ( ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  K
) y )  =  z )  <->  ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  L
) y )  =  z ) ) )
7 dvdsrpropdg.1 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  K ) )
87eleq2d 2266 . . . . 5  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  K
) ) )
97rexeqdv 2700 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( .r `  K ) y )  =  z  <->  E. x  e.  ( Base `  K ) ( x ( .r `  K ) y )  =  z ) )
108, 9anbi12d 473 . . . 4  |-  ( ph  ->  ( ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  K
) y )  =  z )  <->  ( y  e.  ( Base `  K
)  /\  E. x  e.  ( Base `  K
) ( x ( .r `  K ) y )  =  z ) ) )
11 dvdsrpropdg.2 . . . . . 6  |-  ( ph  ->  B  =  ( Base `  L ) )
1211eleq2d 2266 . . . . 5  |-  ( ph  ->  ( y  e.  B  <->  y  e.  ( Base `  L
) ) )
1311rexeqdv 2700 . . . . 5  |-  ( ph  ->  ( E. x  e.  B  ( x ( .r `  L ) y )  =  z  <->  E. x  e.  ( Base `  L ) ( x ( .r `  L ) y )  =  z ) )
1412, 13anbi12d 473 . . . 4  |-  ( ph  ->  ( ( y  e.  B  /\  E. x  e.  B  ( x
( .r `  L
) y )  =  z )  <->  ( y  e.  ( Base `  L
)  /\  E. x  e.  ( Base `  L
) ( x ( .r `  L ) y )  =  z ) ) )
156, 10, 143bitr3d 218 . . 3  |-  ( ph  ->  ( ( y  e.  ( Base `  K
)  /\  E. x  e.  ( Base `  K
) ( x ( .r `  K ) y )  =  z )  <->  ( y  e.  ( Base `  L
)  /\  E. x  e.  ( Base `  L
) ( x ( .r `  L ) y )  =  z ) ) )
1615opabbidv 4100 . 2  |-  ( ph  ->  { <. y ,  z
>.  |  ( y  e.  ( Base `  K
)  /\  E. x  e.  ( Base `  K
) ( x ( .r `  K ) y )  =  z ) }  =  { <. y ,  z >.  |  ( y  e.  ( Base `  L
)  /\  E. x  e.  ( Base `  L
) ( x ( .r `  L ) y )  =  z ) } )
17 eqidd 2197 . . 3  |-  ( ph  ->  ( Base `  K
)  =  ( Base `  K ) )
18 eqidd 2197 . . 3  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 K ) )
19 dvdsrpropdg.k . . 3  |-  ( ph  ->  K  e. SRing )
20 eqidd 2197 . . 3  |-  ( ph  ->  ( .r `  K
)  =  ( .r
`  K ) )
2117, 18, 19, 20dvdsrvald 13725 . 2  |-  ( ph  ->  ( ||r `
 K )  =  { <. y ,  z
>.  |  ( y  e.  ( Base `  K
)  /\  E. x  e.  ( Base `  K
) ( x ( .r `  K ) y )  =  z ) } )
22 eqidd 2197 . . 3  |-  ( ph  ->  ( Base `  L
)  =  ( Base `  L ) )
23 eqidd 2197 . . 3  |-  ( ph  ->  ( ||r `
 L )  =  ( ||r `
 L ) )
24 dvdsrpropdg.l . . 3  |-  ( ph  ->  L  e. SRing )
25 eqidd 2197 . . 3  |-  ( ph  ->  ( .r `  L
)  =  ( .r
`  L ) )
2622, 23, 24, 25dvdsrvald 13725 . 2  |-  ( ph  ->  ( ||r `
 L )  =  { <. y ,  z
>.  |  ( y  e.  ( Base `  L
)  /\  E. x  e.  ( Base `  L
) ( x ( .r `  L ) y )  =  z ) } )
2716, 21, 263eqtr4d 2239 1  |-  ( ph  ->  ( ||r `
 K )  =  ( ||r `
 L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   {copab 4094   ` cfv 5259  (class class class)co 5925   Basecbs 12703   .rcmulr 12781  SRingcsrg 13595   ||rcdsr 13718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-iota 5220  df-fun 5261  df-fn 5262  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mgp 13553  df-srg 13596  df-dvdsr 13721
This theorem is referenced by:  unitpropdg  13780
  Copyright terms: Public domain W3C validator