ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divvalap Unicode version

Theorem divvalap 8817
Description: Value of division: the (unique) element  x such that  ( B  x.  x )  =  A. This is meaningful only when  B is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
divvalap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem divvalap
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1021 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  A  e.  CC )
2 simp2 1022 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  e.  CC )
3 0cn 8134 . . . . . 6  |-  0  e.  CC
4 apne 8766 . . . . . 6  |-  ( ( B  e.  CC  /\  0  e.  CC )  ->  ( B #  0  ->  B  =/=  0 ) )
53, 4mpan2 425 . . . . 5  |-  ( B  e.  CC  ->  ( B #  0  ->  B  =/=  0 ) )
65adantl 277 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B #  0  ->  B  =/=  0 ) )
763impia 1224 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  =/=  0 )
8 eldifsn 3794 . . 3  |-  ( B  e.  ( CC  \  { 0 } )  <-> 
( B  e.  CC  /\  B  =/=  0 ) )
92, 7, 8sylanbrc 417 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  e.  ( CC  \  {
0 } ) )
10 receuap 8812 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
11 riotacl 5969 . . 3  |-  ( E! x  e.  CC  ( B  x.  x )  =  A  ->  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  CC )
1210, 11syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  CC )
13 eqeq2 2239 . . . 4  |-  ( z  =  A  ->  (
( y  x.  x
)  =  z  <->  ( y  x.  x )  =  A ) )
1413riotabidv 5955 . . 3  |-  ( z  =  A  ->  ( iota_ x  e.  CC  (
y  x.  x )  =  z )  =  ( iota_ x  e.  CC  ( y  x.  x
)  =  A ) )
15 oveq1 6007 . . . . 5  |-  ( y  =  B  ->  (
y  x.  x )  =  ( B  x.  x ) )
1615eqeq1d 2238 . . . 4  |-  ( y  =  B  ->  (
( y  x.  x
)  =  A  <->  ( B  x.  x )  =  A ) )
1716riotabidv 5955 . . 3  |-  ( y  =  B  ->  ( iota_ x  e.  CC  (
y  x.  x )  =  A )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
18 df-div 8816 . . 3  |-  /  =  ( z  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ x  e.  CC  ( y  x.  x )  =  z ) )
1914, 17, 18ovmpog 6138 . 2  |-  ( ( A  e.  CC  /\  B  e.  ( CC  \  { 0 } )  /\  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  CC )  ->  ( A  /  B )  =  (
iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
201, 9, 12, 19syl3anc 1271 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   E!wreu 2510    \ cdif 3194   {csn 3666   class class class wbr 4082   iota_crio 5952  (class class class)co 6000   CCcc 7993   0cc0 7995    x. cmul 8000   # cap 8724    / cdiv 8815
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816
This theorem is referenced by:  divmulap  8818  divclap  8821
  Copyright terms: Public domain W3C validator