ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divvalap Unicode version

Theorem divvalap 8458
Description: Value of division: the (unique) element  x such that  ( B  x.  x )  =  A. This is meaningful only when  B is apart from zero. (Contributed by Jim Kingdon, 21-Feb-2020.)
Assertion
Ref Expression
divvalap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem divvalap
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 982 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  A  e.  CC )
2 simp2 983 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  e.  CC )
3 0cn 7782 . . . . . 6  |-  0  e.  CC
4 apne 8409 . . . . . 6  |-  ( ( B  e.  CC  /\  0  e.  CC )  ->  ( B #  0  ->  B  =/=  0 ) )
53, 4mpan2 422 . . . . 5  |-  ( B  e.  CC  ->  ( B #  0  ->  B  =/=  0 ) )
65adantl 275 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B #  0  ->  B  =/=  0 ) )
763impia 1179 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  =/=  0 )
8 eldifsn 3658 . . 3  |-  ( B  e.  ( CC  \  { 0 } )  <-> 
( B  e.  CC  /\  B  =/=  0 ) )
92, 7, 8sylanbrc 414 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  B  e.  ( CC  \  {
0 } ) )
10 receuap 8454 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  E! x  e.  CC  ( B  x.  x )  =  A )
11 riotacl 5752 . . 3  |-  ( E! x  e.  CC  ( B  x.  x )  =  A  ->  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  CC )
1210, 11syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  CC )
13 eqeq2 2150 . . . 4  |-  ( z  =  A  ->  (
( y  x.  x
)  =  z  <->  ( y  x.  x )  =  A ) )
1413riotabidv 5740 . . 3  |-  ( z  =  A  ->  ( iota_ x  e.  CC  (
y  x.  x )  =  z )  =  ( iota_ x  e.  CC  ( y  x.  x
)  =  A ) )
15 oveq1 5789 . . . . 5  |-  ( y  =  B  ->  (
y  x.  x )  =  ( B  x.  x ) )
1615eqeq1d 2149 . . . 4  |-  ( y  =  B  ->  (
( y  x.  x
)  =  A  <->  ( B  x.  x )  =  A ) )
1716riotabidv 5740 . . 3  |-  ( y  =  B  ->  ( iota_ x  e.  CC  (
y  x.  x )  =  A )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
18 df-div 8457 . . 3  |-  /  =  ( z  e.  CC ,  y  e.  ( CC  \  { 0 } )  |->  ( iota_ x  e.  CC  ( y  x.  x )  =  z ) )
1914, 17, 18ovmpog 5913 . 2  |-  ( ( A  e.  CC  /\  B  e.  ( CC  \  { 0 } )  /\  ( iota_ x  e.  CC  ( B  x.  x )  =  A )  e.  CC )  ->  ( A  /  B )  =  (
iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
201, 9, 12, 19syl3anc 1217 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( iota_ x  e.  CC  ( B  x.  x
)  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 963    = wceq 1332    e. wcel 1481    =/= wne 2309   E!wreu 2419    \ cdif 3073   {csn 3532   class class class wbr 3937   iota_crio 5737  (class class class)co 5782   CCcc 7642   0cc0 7644    x. cmul 7649   # cap 8367    / cdiv 8456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-po 4226  df-iso 4227  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457
This theorem is referenced by:  divmulap  8459  divclap  8462
  Copyright terms: Public domain W3C validator