Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qdenval | Unicode version |
Description: Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.) |
Ref | Expression |
---|---|
qdenval | denom |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . . . 5 | |
2 | 1 | anbi2d 460 | . . . 4 |
3 | 2 | riotabidv 5800 | . . 3 |
4 | 3 | fveq2d 5490 | . 2 |
5 | df-denom 12116 | . 2 denom | |
6 | zex 9200 | . . . 4 | |
7 | nnex 8863 | . . . 4 | |
8 | 6, 7 | xpex 4719 | . . 3 |
9 | riotaexg 5802 | . . 3 | |
10 | 2ndexg 6136 | . . 3 | |
11 | 8, 9, 10 | mp2b 8 | . 2 |
12 | 4, 5, 11 | fvmpt 5563 | 1 denom |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cvv 2726 cxp 4602 cfv 5188 crio 5797 (class class class)co 5842 c1st 6106 c2nd 6107 c1 7754 cdiv 8568 cn 8857 cz 9191 cq 9557 cgcd 11875 denomcdenom 12114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-riota 5798 df-ov 5845 df-2nd 6109 df-neg 8072 df-inn 8858 df-z 9192 df-denom 12116 |
This theorem is referenced by: qnumdencl 12119 fden 12123 qnumdenbi 12124 |
Copyright terms: Public domain | W3C validator |