ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdenval Unicode version

Theorem qdenval 12204
Description: Value of the canonical denominator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qdenval  |-  ( A  e.  QQ  ->  (denom `  A )  =  ( 2nd `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
Distinct variable group:    x, A

Proof of Theorem qdenval
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2196 . . . . 5  |-  ( a  =  A  ->  (
a  =  ( ( 1st `  x )  /  ( 2nd `  x
) )  <->  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
21anbi2d 464 . . . 4  |-  ( a  =  A  ->  (
( ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  1  /\  a  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )  <->  ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )
32riotabidv 5849 . . 3  |-  ( a  =  A  ->  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  a  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )  =  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )
43fveq2d 5534 . 2  |-  ( a  =  A  ->  ( 2nd `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  a  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )  =  ( 2nd `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
5 df-denom 12202 . 2  |- denom  =  ( a  e.  QQ  |->  ( 2nd `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  a  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
6 zex 9280 . . . 4  |-  ZZ  e.  _V
7 nnex 8943 . . . 4  |-  NN  e.  _V
86, 7xpex 4756 . . 3  |-  ( ZZ 
X.  NN )  e. 
_V
9 riotaexg 5851 . . 3  |-  ( ( ZZ  X.  NN )  e.  _V  ->  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )  e.  _V )
10 2ndexg 6187 . . 3  |-  ( (
iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )  e.  _V  ->  ( 2nd `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )  e.  _V )
118, 9, 10mp2b 8 . 2  |-  ( 2nd `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) ) ) )  e. 
_V
124, 5, 11fvmpt 5609 1  |-  ( A  e.  QQ  ->  (denom `  A )  =  ( 2nd `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   _Vcvv 2752    X. cxp 4639   ` cfv 5231   iota_crio 5846  (class class class)co 5891   1stc1st 6157   2ndc2nd 6158   1c1 7830    / cdiv 8647   NNcn 8937   ZZcz 9271   QQcq 9637    gcd cgcd 11961  denomcdenom 12200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-cnex 7920  ax-resscn 7921  ax-1re 7923  ax-addrcl 7926
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-sbc 2978  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-fo 5237  df-fv 5239  df-riota 5847  df-ov 5894  df-2nd 6160  df-neg 8149  df-inn 8938  df-z 9272  df-denom 12202
This theorem is referenced by:  qnumdencl  12205  fden  12209  qnumdenbi  12210
  Copyright terms: Public domain W3C validator