ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnumval Unicode version

Theorem qnumval 11874
Description: Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumval  |-  ( A  e.  QQ  ->  (numer `  A )  =  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
Distinct variable group:    x, A

Proof of Theorem qnumval
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2146 . . . . 5  |-  ( a  =  A  ->  (
a  =  ( ( 1st `  x )  /  ( 2nd `  x
) )  <->  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
21anbi2d 459 . . . 4  |-  ( a  =  A  ->  (
( ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  1  /\  a  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )  <->  ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )
32riotabidv 5732 . . 3  |-  ( a  =  A  ->  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  a  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )  =  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )
43fveq2d 5425 . 2  |-  ( a  =  A  ->  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  a  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )  =  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
5 df-numer 11872 . 2  |- numer  =  ( a  e.  QQ  |->  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  a  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
6 zex 9075 . . . 4  |-  ZZ  e.  _V
7 nnex 8738 . . . 4  |-  NN  e.  _V
86, 7xpex 4654 . . 3  |-  ( ZZ 
X.  NN )  e. 
_V
9 riotaexg 5734 . . 3  |-  ( ( ZZ  X.  NN )  e.  _V  ->  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )  e.  _V )
10 1stexg 6065 . . 3  |-  ( (
iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )  e.  _V  ->  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )  e.  _V )
118, 9, 10mp2b 8 . 2  |-  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) ) ) )  e. 
_V
124, 5, 11fvmpt 5498 1  |-  ( A  e.  QQ  ->  (numer `  A )  =  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    X. cxp 4537   ` cfv 5123   iota_crio 5729  (class class class)co 5774   1stc1st 6036   2ndc2nd 6037   1c1 7633    / cdiv 8444   NNcn 8732   ZZcz 9066   QQcq 9423    gcd cgcd 11646  numercnumer 11870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-cnex 7723  ax-resscn 7724  ax-1re 7726  ax-addrcl 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fo 5129  df-fv 5131  df-riota 5730  df-ov 5777  df-1st 6038  df-neg 7948  df-inn 8733  df-z 9067  df-numer 11872
This theorem is referenced by:  qnumdencl  11876  fnum  11879  qnumdenbi  11881
  Copyright terms: Public domain W3C validator