ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qnumval Unicode version

Theorem qnumval 12326
Description: Value of the canonical numerator function. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumval  |-  ( A  e.  QQ  ->  (numer `  A )  =  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
Distinct variable group:    x, A

Proof of Theorem qnumval
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2200 . . . . 5  |-  ( a  =  A  ->  (
a  =  ( ( 1st `  x )  /  ( 2nd `  x
) )  <->  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
21anbi2d 464 . . . 4  |-  ( a  =  A  ->  (
( ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  1  /\  a  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )  <->  ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )
32riotabidv 5876 . . 3  |-  ( a  =  A  ->  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  a  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )  =  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )
43fveq2d 5559 . 2  |-  ( a  =  A  ->  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  a  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )  =  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
5 df-numer 12324 . 2  |- numer  =  ( a  e.  QQ  |->  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  a  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
6 zex 9329 . . . 4  |-  ZZ  e.  _V
7 nnex 8990 . . . 4  |-  NN  e.  _V
86, 7xpex 4775 . . 3  |-  ( ZZ 
X.  NN )  e. 
_V
9 riotaexg 5878 . . 3  |-  ( ( ZZ  X.  NN )  e.  _V  ->  ( iota_ x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )  e.  _V )
10 1stexg 6222 . . 3  |-  ( (
iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )  e.  _V  ->  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) )  e.  _V )
118, 9, 10mp2b 8 . 2  |-  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) ) ) )  e. 
_V
124, 5, 11fvmpt 5635 1  |-  ( A  e.  QQ  ->  (numer `  A )  =  ( 1st `  ( iota_ x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760    X. cxp 4658   ` cfv 5255   iota_crio 5873  (class class class)co 5919   1stc1st 6193   2ndc2nd 6194   1c1 7875    / cdiv 8693   NNcn 8984   ZZcz 9320   QQcq 9687    gcd cgcd 12082  numercnumer 12322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-cnex 7965  ax-resscn 7966  ax-1re 7968  ax-addrcl 7971
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-riota 5874  df-ov 5922  df-1st 6195  df-neg 8195  df-inn 8985  df-z 9321  df-numer 12324
This theorem is referenced by:  qnumdencl  12328  fnum  12331  qnumdenbi  12333
  Copyright terms: Public domain W3C validator