ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemcau Unicode version

Theorem axcaucvglemcau 7899
Description: Lemma for axcaucvg 7901. The result of mapping to  N. and  R. satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
axcaucvg.f  |-  ( ph  ->  F : N --> RR )
axcaucvg.cau  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
axcaucvg.g  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
Assertion
Ref Expression
axcaucvglemcau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
Distinct variable groups:    k, F, n, z, j    k, N, n    z, G    k,
l, r, u, n   
j, l, u, z    ph, j, k, n    y,
l, u    x, y    j, n, z, k
Allowed substitution hints:    ph( x, y, z, u, r, l)    F( x, y, u, r, l)    G( x, y, u, j, k, n, r, l)    N( x, y, z, u, j, r, l)

Proof of Theorem axcaucvglemcau
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrenn 7856 . . . . . . . . . 10  |-  ( n 
<N  k  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
21adantl 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
3 breq2 4009 . . . . . . . . . . 11  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
4 fveq2 5517 . . . . . . . . . . . . . 14  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( F `  b )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
54oveq1d 5892 . . . . . . . . . . . . 13  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  ( ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
65breq2d 4017 . . . . . . . . . . . 12  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  <-> 
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
74breq1d 4015 . . . . . . . . . . . 12  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  <RR  ( ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  <-> 
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
86, 7anbi12d 473 . . . . . . . . . . 11  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )  <->  ( ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
93, 8imbi12d 234 . . . . . . . . . 10  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )  <->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) ) )
10 breq1 4008 . . . . . . . . . . . . 13  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( a  <RR  b  <->  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b ) )
11 fveq2 5517 . . . . . . . . . . . . . . 15  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( F `  a )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
12 oveq1 5884 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( a  x.  r )  =  (
<. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r ) )
1312eqeq1d 2186 . . . . . . . . . . . . . . . . 17  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
a  x.  r )  =  1  <->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )
1413riotabidv 5835 . . . . . . . . . . . . . . . 16  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( iota_ r  e.  RR  ( a  x.  r )  =  1 )  =  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )
1514oveq2d 5893 . . . . . . . . . . . . . . 15  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  =  ( ( F `  b
)  +  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
1611, 15breq12d 4018 . . . . . . . . . . . . . 14  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
1711, 14oveq12d 5895 . . . . . . . . . . . . . . 15  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  a )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  =  ( ( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
1817breq2d 4017 . . . . . . . . . . . . . 14  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
1916, 18anbi12d 473 . . . . . . . . . . . . 13  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
( F `  a
)  <RR  ( ( F `
 b )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) )  <-> 
( ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
2010, 19imbi12d 234 . . . . . . . . . . . 12  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
a  <RR  b  ->  (
( F `  a
)  <RR  ( ( F `
 b )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )  <->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) ) )
2120ralbidv 2477 . . . . . . . . . . 11  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( A. b  e.  N  (
a  <RR  b  ->  (
( F `  a
)  <RR  ( ( F `
 b )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )  <->  A. b  e.  N  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) ) )
22 axcaucvg.cau . . . . . . . . . . . . 13  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
23 breq1 4008 . . . . . . . . . . . . . . 15  |-  ( n  =  a  ->  (
n  <RR  k  <->  a  <RR  k ) )
24 fveq2 5517 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  ( F `  n )  =  ( F `  a ) )
25 oveq1 5884 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  a  ->  (
n  x.  r )  =  ( a  x.  r ) )
2625eqeq1d 2186 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  a  ->  (
( n  x.  r
)  =  1  <->  (
a  x.  r )  =  1 ) )
2726riotabidv 5835 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  a  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )
2827oveq2d 5893 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  k )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )
2924, 28breq12d 4018 . . . . . . . . . . . . . . . 16  |-  ( n  =  a  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  a )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3024, 27oveq12d 5895 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  (
( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )
3130breq2d 4017 . . . . . . . . . . . . . . . 16  |-  ( n  =  a  ->  (
( F `  k
)  <RR  ( ( F `
 n )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  k )  <RR  ( ( F `  a )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3229, 31anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( n  =  a  ->  (
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) )  <->  ( ( F `  a )  <RR  ( ( F `  k )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) )
3323, 32imbi12d 234 . . . . . . . . . . . . . 14  |-  ( n  =  a  ->  (
( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) )  <->  ( a  <RR  k  ->  ( ( F `  a )  <RR  ( ( F `  k )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) ) )
34 breq2 4009 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  (
a  <RR  k  <->  a  <RR  b ) )
35 fveq2 5517 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  b  ->  ( F `  k )  =  ( F `  b ) )
3635oveq1d 5892 . . . . . . . . . . . . . . . . 17  |-  ( k  =  b  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  =  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )
3736breq2d 4017 . . . . . . . . . . . . . . . 16  |-  ( k  =  b  ->  (
( F `  a
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  a )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3835breq1d 4015 . . . . . . . . . . . . . . . 16  |-  ( k  =  b  ->  (
( F `  k
)  <RR  ( ( F `
 a )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  b )  <RR  ( ( F `  a )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3937, 38anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  (
( ( F `  a )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )  <->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) )
4034, 39imbi12d 234 . . . . . . . . . . . . . 14  |-  ( k  =  b  ->  (
( a  <RR  k  -> 
( ( F `  a )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) ) )  <->  ( a  <RR  b  ->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) ) )
4133, 40cbvral2v 2718 . . . . . . . . . . . . 13  |-  ( A. n  e.  N  A. k  e.  N  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )  <->  A. a  e.  N  A. b  e.  N  ( a  <RR  b  -> 
( ( F `  a )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) ) ) )
4222, 41sylib 122 . . . . . . . . . . . 12  |-  ( ph  ->  A. a  e.  N  A. b  e.  N  ( a  <RR  b  -> 
( ( F `  a )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) ) ) )
4342ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  A. a  e.  N  A. b  e.  N  ( a  <RR  b  ->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) )
44 pitonn 7849 . . . . . . . . . . . . 13  |-  ( n  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
45 axcaucvg.n . . . . . . . . . . . . 13  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
4644, 45eleqtrrdi 2271 . . . . . . . . . . . 12  |-  ( n  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
4746ad3antlr 493 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
4821, 43, 47rspcdva 2848 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  A. b  e.  N  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
49 pitonn 7849 . . . . . . . . . . . 12  |-  ( k  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
5049, 45eleqtrrdi 2271 . . . . . . . . . . 11  |-  ( k  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
5150ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
529, 48, 51rspcdva 2848 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
532, 52mpd 13 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
5453simpld 112 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
55 axcaucvg.f . . . . . . . . 9  |-  ( ph  ->  F : N --> RR )
56 axcaucvg.g . . . . . . . . 9  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
5745, 55, 22, 56axcaucvglemval 7898 . . . . . . . 8  |-  ( (
ph  /\  n  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  n ) ,  0R >. )
5857ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  n ) ,  0R >. )
5945, 55, 22, 56axcaucvglemval 7898 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  k ) ,  0R >. )
6059adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  k ) ,  0R >. )
6160adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  k ) ,  0R >. )
62 recriota 7891 . . . . . . . . . 10  |-  ( n  e.  N.  ->  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 )  = 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6362ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 )  = 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6461, 63oveq12d 5895 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  ( <. ( G `  k ) ,  0R >.  +  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
6545, 55, 22, 56axcaucvglemf 7897 . . . . . . . . . . 11  |-  ( ph  ->  G : N. --> R. )
6665ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  G : N.
--> R. )
67 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  k  e.  N. )
6866, 67ffvelcdmd 5654 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  k )  e.  R. )
69 recnnpr 7549 . . . . . . . . . . 11  |-  ( n  e.  N.  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
70 prsrcl 7785 . . . . . . . . . . 11  |-  ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P.  ->  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
7169, 70syl 14 . . . . . . . . . 10  |-  ( n  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
7271ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
73 addresr 7838 . . . . . . . . 9  |-  ( ( ( G `  k
)  e.  R.  /\  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( <.
( G `  k
) ,  0R >.  + 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
7468, 72, 73syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( <. ( G `  k ) ,  0R >.  +  <. [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
7564, 74eqtrd 2210 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  <. ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
7654, 58, 753brtr3d 4036 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. ( G `
 n ) ,  0R >.  <RR  <. (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
77 ltresr 7840 . . . . . 6  |-  ( <.
( G `  n
) ,  0R >.  <RR  <. ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >.  <->  ( G `  n )  <R  (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
7876, 77sylib 122 . . . . 5  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  n )  <R  (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
7953simprd 114 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
8058, 63oveq12d 5895 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  ( <. ( G `  n ) ,  0R >.  +  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
81 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  n  e.  N. )
8266, 81ffvelcdmd 5654 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  n )  e.  R. )
83 addresr 7838 . . . . . . . . 9  |-  ( ( ( G `  n
)  e.  R.  /\  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( <.
( G `  n
) ,  0R >.  + 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
8482, 72, 83syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( <. ( G `  n ) ,  0R >.  +  <. [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
8580, 84eqtrd 2210 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  <. ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
8679, 61, 853brtr3d 4036 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. ( G `
 k ) ,  0R >.  <RR  <. (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
87 ltresr 7840 . . . . . 6  |-  ( <.
( G `  k
) ,  0R >.  <RR  <. ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >.  <->  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
8886, 87sylib 122 . . . . 5  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
8978, 88jca 306 . . . 4  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( G `  n )  <R  ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k
)  <R  ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
9089ex 115 . . 3  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
9190ralrimiva 2550 . 2  |-  ( (
ph  /\  n  e.  N. )  ->  A. k  e.  N.  ( n  <N  k  ->  ( ( G `
 n )  <R 
( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k
)  <R  ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
9291ralrimiva 2550 1  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   <.cop 3597   |^|cint 3846   class class class wbr 4005    |-> cmpt 4066   -->wf 5214   ` cfv 5218   iota_crio 5832  (class class class)co 5877   1oc1o 6412   [cec 6535   N.cnpi 7273    <N clti 7276    ~Q ceq 7280   *Qcrq 7285    <Q cltq 7286   P.cnp 7292   1Pc1p 7293    +P. cpp 7294    ~R cer 7297   R.cnr 7298   0Rc0r 7299    +R cplr 7302    <R cltr 7304   RRcr 7812   1c1 7814    + caddc 7816    <RR cltrr 7817    x. cmul 7818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-1o 6419  df-2o 6420  df-oadd 6423  df-omul 6424  df-er 6537  df-ec 6539  df-qs 6543  df-ni 7305  df-pli 7306  df-mi 7307  df-lti 7308  df-plpq 7345  df-mpq 7346  df-enq 7348  df-nqqs 7349  df-plqqs 7350  df-mqqs 7351  df-1nqqs 7352  df-rq 7353  df-ltnqqs 7354  df-enq0 7425  df-nq0 7426  df-0nq0 7427  df-plq0 7428  df-mq0 7429  df-inp 7467  df-i1p 7468  df-iplp 7469  df-imp 7470  df-iltp 7471  df-enr 7727  df-nr 7728  df-plr 7729  df-mr 7730  df-ltr 7731  df-0r 7732  df-1r 7733  df-m1r 7734  df-c 7819  df-0 7820  df-1 7821  df-r 7823  df-add 7824  df-mul 7825  df-lt 7826
This theorem is referenced by:  axcaucvglemres  7900
  Copyright terms: Public domain W3C validator