ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemcau Unicode version

Theorem axcaucvglemcau 7982
Description: Lemma for axcaucvg 7984. The result of mapping to  N. and  R. satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
axcaucvg.f  |-  ( ph  ->  F : N --> RR )
axcaucvg.cau  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
axcaucvg.g  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
Assertion
Ref Expression
axcaucvglemcau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
Distinct variable groups:    k, F, n, z, j    k, N, n    z, G    k,
l, r, u, n   
j, l, u, z    ph, j, k, n    y,
l, u    x, y    j, n, z, k
Allowed substitution hints:    ph( x, y, z, u, r, l)    F( x, y, u, r, l)    G( x, y, u, j, k, n, r, l)    N( x, y, z, u, j, r, l)

Proof of Theorem axcaucvglemcau
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrenn 7939 . . . . . . . . . 10  |-  ( n 
<N  k  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
21adantl 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
3 breq2 4038 . . . . . . . . . . 11  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
4 fveq2 5561 . . . . . . . . . . . . . 14  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( F `  b )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
54oveq1d 5940 . . . . . . . . . . . . 13  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  ( ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
65breq2d 4046 . . . . . . . . . . . 12  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  <-> 
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
74breq1d 4044 . . . . . . . . . . . 12  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  <RR  ( ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  <-> 
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
86, 7anbi12d 473 . . . . . . . . . . 11  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )  <->  ( ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
93, 8imbi12d 234 . . . . . . . . . 10  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )  <->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) ) )
10 breq1 4037 . . . . . . . . . . . . 13  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( a  <RR  b  <->  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b ) )
11 fveq2 5561 . . . . . . . . . . . . . . 15  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( F `  a )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
12 oveq1 5932 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( a  x.  r )  =  (
<. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r ) )
1312eqeq1d 2205 . . . . . . . . . . . . . . . . 17  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
a  x.  r )  =  1  <->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )
1413riotabidv 5882 . . . . . . . . . . . . . . . 16  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( iota_ r  e.  RR  ( a  x.  r )  =  1 )  =  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )
1514oveq2d 5941 . . . . . . . . . . . . . . 15  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  =  ( ( F `  b
)  +  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
1611, 15breq12d 4047 . . . . . . . . . . . . . 14  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
1711, 14oveq12d 5943 . . . . . . . . . . . . . . 15  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  a )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  =  ( ( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
1817breq2d 4046 . . . . . . . . . . . . . 14  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
1916, 18anbi12d 473 . . . . . . . . . . . . 13  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
( F `  a
)  <RR  ( ( F `
 b )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) )  <-> 
( ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
2010, 19imbi12d 234 . . . . . . . . . . . 12  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
a  <RR  b  ->  (
( F `  a
)  <RR  ( ( F `
 b )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )  <->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) ) )
2120ralbidv 2497 . . . . . . . . . . 11  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( A. b  e.  N  (
a  <RR  b  ->  (
( F `  a
)  <RR  ( ( F `
 b )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )  <->  A. b  e.  N  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) ) )
22 axcaucvg.cau . . . . . . . . . . . . 13  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
23 breq1 4037 . . . . . . . . . . . . . . 15  |-  ( n  =  a  ->  (
n  <RR  k  <->  a  <RR  k ) )
24 fveq2 5561 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  ( F `  n )  =  ( F `  a ) )
25 oveq1 5932 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  a  ->  (
n  x.  r )  =  ( a  x.  r ) )
2625eqeq1d 2205 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  a  ->  (
( n  x.  r
)  =  1  <->  (
a  x.  r )  =  1 ) )
2726riotabidv 5882 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  a  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )
2827oveq2d 5941 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  k )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )
2924, 28breq12d 4047 . . . . . . . . . . . . . . . 16  |-  ( n  =  a  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  a )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3024, 27oveq12d 5943 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  (
( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )
3130breq2d 4046 . . . . . . . . . . . . . . . 16  |-  ( n  =  a  ->  (
( F `  k
)  <RR  ( ( F `
 n )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  k )  <RR  ( ( F `  a )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3229, 31anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( n  =  a  ->  (
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) )  <->  ( ( F `  a )  <RR  ( ( F `  k )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) )
3323, 32imbi12d 234 . . . . . . . . . . . . . 14  |-  ( n  =  a  ->  (
( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) )  <->  ( a  <RR  k  ->  ( ( F `  a )  <RR  ( ( F `  k )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) ) )
34 breq2 4038 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  (
a  <RR  k  <->  a  <RR  b ) )
35 fveq2 5561 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  b  ->  ( F `  k )  =  ( F `  b ) )
3635oveq1d 5940 . . . . . . . . . . . . . . . . 17  |-  ( k  =  b  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  =  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )
3736breq2d 4046 . . . . . . . . . . . . . . . 16  |-  ( k  =  b  ->  (
( F `  a
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  a )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3835breq1d 4044 . . . . . . . . . . . . . . . 16  |-  ( k  =  b  ->  (
( F `  k
)  <RR  ( ( F `
 a )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  b )  <RR  ( ( F `  a )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3937, 38anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  (
( ( F `  a )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )  <->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) )
4034, 39imbi12d 234 . . . . . . . . . . . . . 14  |-  ( k  =  b  ->  (
( a  <RR  k  -> 
( ( F `  a )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) ) )  <->  ( a  <RR  b  ->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) ) )
4133, 40cbvral2v 2742 . . . . . . . . . . . . 13  |-  ( A. n  e.  N  A. k  e.  N  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )  <->  A. a  e.  N  A. b  e.  N  ( a  <RR  b  -> 
( ( F `  a )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) ) ) )
4222, 41sylib 122 . . . . . . . . . . . 12  |-  ( ph  ->  A. a  e.  N  A. b  e.  N  ( a  <RR  b  -> 
( ( F `  a )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) ) ) )
4342ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  A. a  e.  N  A. b  e.  N  ( a  <RR  b  ->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) )
44 pitonn 7932 . . . . . . . . . . . . 13  |-  ( n  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
45 axcaucvg.n . . . . . . . . . . . . 13  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
4644, 45eleqtrrdi 2290 . . . . . . . . . . . 12  |-  ( n  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
4746ad3antlr 493 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
4821, 43, 47rspcdva 2873 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  A. b  e.  N  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
49 pitonn 7932 . . . . . . . . . . . 12  |-  ( k  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
5049, 45eleqtrrdi 2290 . . . . . . . . . . 11  |-  ( k  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
5150ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
529, 48, 51rspcdva 2873 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
532, 52mpd 13 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
5453simpld 112 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
55 axcaucvg.f . . . . . . . . 9  |-  ( ph  ->  F : N --> RR )
56 axcaucvg.g . . . . . . . . 9  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
5745, 55, 22, 56axcaucvglemval 7981 . . . . . . . 8  |-  ( (
ph  /\  n  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  n ) ,  0R >. )
5857ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  n ) ,  0R >. )
5945, 55, 22, 56axcaucvglemval 7981 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  k ) ,  0R >. )
6059adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  k ) ,  0R >. )
6160adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  k ) ,  0R >. )
62 recriota 7974 . . . . . . . . . 10  |-  ( n  e.  N.  ->  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 )  = 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6362ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 )  = 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6461, 63oveq12d 5943 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  ( <. ( G `  k ) ,  0R >.  +  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
6545, 55, 22, 56axcaucvglemf 7980 . . . . . . . . . . 11  |-  ( ph  ->  G : N. --> R. )
6665ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  G : N.
--> R. )
67 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  k  e.  N. )
6866, 67ffvelcdmd 5701 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  k )  e.  R. )
69 recnnpr 7632 . . . . . . . . . . 11  |-  ( n  e.  N.  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
70 prsrcl 7868 . . . . . . . . . . 11  |-  ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P.  ->  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
7169, 70syl 14 . . . . . . . . . 10  |-  ( n  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
7271ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
73 addresr 7921 . . . . . . . . 9  |-  ( ( ( G `  k
)  e.  R.  /\  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( <.
( G `  k
) ,  0R >.  + 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
7468, 72, 73syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( <. ( G `  k ) ,  0R >.  +  <. [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
7564, 74eqtrd 2229 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  <. ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
7654, 58, 753brtr3d 4065 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. ( G `
 n ) ,  0R >.  <RR  <. (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
77 ltresr 7923 . . . . . 6  |-  ( <.
( G `  n
) ,  0R >.  <RR  <. ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >.  <->  ( G `  n )  <R  (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
7876, 77sylib 122 . . . . 5  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  n )  <R  (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
7953simprd 114 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
8058, 63oveq12d 5943 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  ( <. ( G `  n ) ,  0R >.  +  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
81 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  n  e.  N. )
8266, 81ffvelcdmd 5701 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  n )  e.  R. )
83 addresr 7921 . . . . . . . . 9  |-  ( ( ( G `  n
)  e.  R.  /\  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( <.
( G `  n
) ,  0R >.  + 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
8482, 72, 83syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( <. ( G `  n ) ,  0R >.  +  <. [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
8580, 84eqtrd 2229 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  <. ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
8679, 61, 853brtr3d 4065 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. ( G `
 k ) ,  0R >.  <RR  <. (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
87 ltresr 7923 . . . . . 6  |-  ( <.
( G `  k
) ,  0R >.  <RR  <. ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >.  <->  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
8886, 87sylib 122 . . . . 5  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
8978, 88jca 306 . . . 4  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( G `  n )  <R  ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k
)  <R  ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
9089ex 115 . . 3  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
9190ralrimiva 2570 . 2  |-  ( (
ph  /\  n  e.  N. )  ->  A. k  e.  N.  ( n  <N  k  ->  ( ( G `
 n )  <R 
( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k
)  <R  ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
9291ralrimiva 2570 1  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   <.cop 3626   |^|cint 3875   class class class wbr 4034    |-> cmpt 4095   -->wf 5255   ` cfv 5259   iota_crio 5879  (class class class)co 5925   1oc1o 6476   [cec 6599   N.cnpi 7356    <N clti 7359    ~Q ceq 7363   *Qcrq 7368    <Q cltq 7369   P.cnp 7375   1Pc1p 7376    +P. cpp 7377    ~R cer 7380   R.cnr 7381   0Rc0r 7382    +R cplr 7385    <R cltr 7387   RRcr 7895   1c1 7897    + caddc 7899    <RR cltrr 7900    x. cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-eprel 4325  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-1o 6483  df-2o 6484  df-oadd 6487  df-omul 6488  df-er 6601  df-ec 6603  df-qs 6607  df-ni 7388  df-pli 7389  df-mi 7390  df-lti 7391  df-plpq 7428  df-mpq 7429  df-enq 7431  df-nqqs 7432  df-plqqs 7433  df-mqqs 7434  df-1nqqs 7435  df-rq 7436  df-ltnqqs 7437  df-enq0 7508  df-nq0 7509  df-0nq0 7510  df-plq0 7511  df-mq0 7512  df-inp 7550  df-i1p 7551  df-iplp 7552  df-imp 7553  df-iltp 7554  df-enr 7810  df-nr 7811  df-plr 7812  df-mr 7813  df-ltr 7814  df-0r 7815  df-1r 7816  df-m1r 7817  df-c 7902  df-0 7903  df-1 7904  df-r 7906  df-add 7907  df-mul 7908  df-lt 7909
This theorem is referenced by:  axcaucvglemres  7983
  Copyright terms: Public domain W3C validator