ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axcaucvglemcau Unicode version

Theorem axcaucvglemcau 7888
Description: Lemma for axcaucvg 7890. The result of mapping to  N. and  R. satisfies the Cauchy condition. (Contributed by Jim Kingdon, 9-Jul-2021.)
Hypotheses
Ref Expression
axcaucvg.n  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
axcaucvg.f  |-  ( ph  ->  F : N --> RR )
axcaucvg.cau  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
axcaucvg.g  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
Assertion
Ref Expression
axcaucvglemcau  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
Distinct variable groups:    k, F, n, z, j    k, N, n    z, G    k,
l, r, u, n   
j, l, u, z    ph, j, k, n    y,
l, u    x, y    j, n, z, k
Allowed substitution hints:    ph( x, y, z, u, r, l)    F( x, y, u, r, l)    G( x, y, u, j, k, n, r, l)    N( x, y, z, u, j, r, l)

Proof of Theorem axcaucvglemcau
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrenn 7845 . . . . . . . . . 10  |-  ( n 
<N  k  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
21adantl 277 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
3 breq2 4004 . . . . . . . . . . 11  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  <->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
4 fveq2 5511 . . . . . . . . . . . . . 14  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( F `  b )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
54oveq1d 5884 . . . . . . . . . . . . 13  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  ( ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
65breq2d 4012 . . . . . . . . . . . 12  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  <-> 
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
74breq1d 4010 . . . . . . . . . . . 12  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  <RR  ( ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  <-> 
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
86, 7anbi12d 473 . . . . . . . . . . 11  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )  <->  ( ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
93, 8imbi12d 234 . . . . . . . . . 10  |-  ( b  =  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )  <->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) ) )
10 breq1 4003 . . . . . . . . . . . . 13  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( a  <RR  b  <->  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b ) )
11 fveq2 5511 . . . . . . . . . . . . . . 15  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( F `  a )  =  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
12 oveq1 5876 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( a  x.  r )  =  (
<. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r ) )
1312eqeq1d 2186 . . . . . . . . . . . . . . . . 17  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
a  x.  r )  =  1  <->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )
1413riotabidv 5827 . . . . . . . . . . . . . . . 16  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( iota_ r  e.  RR  ( a  x.  r )  =  1 )  =  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )
1514oveq2d 5885 . . . . . . . . . . . . . . 15  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  =  ( ( F `  b
)  +  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
1611, 15breq12d 4013 . . . . . . . . . . . . . 14  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
1711, 14oveq12d 5887 . . . . . . . . . . . . . . 15  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  a )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  =  ( ( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
1817breq2d 4012 . . . . . . . . . . . . . 14  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  b )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
1916, 18anbi12d 473 . . . . . . . . . . . . 13  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
( F `  a
)  <RR  ( ( F `
 b )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) )  <-> 
( ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
2010, 19imbi12d 234 . . . . . . . . . . . 12  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( (
a  <RR  b  ->  (
( F `  a
)  <RR  ( ( F `
 b )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )  <->  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) ) )
2120ralbidv 2477 . . . . . . . . . . 11  |-  ( a  =  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( A. b  e.  N  (
a  <RR  b  ->  (
( F `  a
)  <RR  ( ( F `
 b )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )  <->  A. b  e.  N  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) ) )
22 axcaucvg.cau . . . . . . . . . . . . 13  |-  ( ph  ->  A. n  e.  N  A. k  e.  N  ( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) ) )
23 breq1 4003 . . . . . . . . . . . . . . 15  |-  ( n  =  a  ->  (
n  <RR  k  <->  a  <RR  k ) )
24 fveq2 5511 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  ( F `  n )  =  ( F `  a ) )
25 oveq1 5876 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  a  ->  (
n  x.  r )  =  ( a  x.  r ) )
2625eqeq1d 2186 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  a  ->  (
( n  x.  r
)  =  1  <->  (
a  x.  r )  =  1 ) )
2726riotabidv 5827 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  a  ->  ( iota_ r  e.  RR  (
n  x.  r )  =  1 )  =  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )
2827oveq2d 5885 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  k )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )
2924, 28breq12d 4013 . . . . . . . . . . . . . . . 16  |-  ( n  =  a  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  a )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3024, 27oveq12d 5887 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  (
( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  =  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )
3130breq2d 4012 . . . . . . . . . . . . . . . 16  |-  ( n  =  a  ->  (
( F `  k
)  <RR  ( ( F `
 n )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  <->  ( F `  k )  <RR  ( ( F `  a )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3229, 31anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( n  =  a  ->  (
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) )  <->  ( ( F `  a )  <RR  ( ( F `  k )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) )
3323, 32imbi12d 234 . . . . . . . . . . . . . 14  |-  ( n  =  a  ->  (
( n  <RR  k  -> 
( ( F `  n )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  n )  +  (
iota_ r  e.  RR  ( n  x.  r
)  =  1 ) ) ) )  <->  ( a  <RR  k  ->  ( ( F `  a )  <RR  ( ( F `  k )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) ) )
34 breq2 4004 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  (
a  <RR  k  <->  a  <RR  b ) )
35 fveq2 5511 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  b  ->  ( F `  k )  =  ( F `  b ) )
3635oveq1d 5884 . . . . . . . . . . . . . . . . 17  |-  ( k  =  b  ->  (
( F `  k
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  =  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )
3736breq2d 4012 . . . . . . . . . . . . . . . 16  |-  ( k  =  b  ->  (
( F `  a
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  a )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3835breq1d 4010 . . . . . . . . . . . . . . . 16  |-  ( k  =  b  ->  (
( F `  k
)  <RR  ( ( F `
 a )  +  ( iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  <->  ( F `  b )  <RR  ( ( F `  a )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) )
3937, 38anbi12d 473 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  (
( ( F `  a )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) )  <->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) )
4034, 39imbi12d 234 . . . . . . . . . . . . . 14  |-  ( k  =  b  ->  (
( a  <RR  k  -> 
( ( F `  a )  <RR  ( ( F `  k )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  k )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) ) )  <->  ( a  <RR  b  ->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) ) )
4133, 40cbvral2v 2716 . . . . . . . . . . . . 13  |-  ( A. n  e.  N  A. k  e.  N  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) )  <->  A. a  e.  N  A. b  e.  N  ( a  <RR  b  -> 
( ( F `  a )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) ) ) )
4222, 41sylib 122 . . . . . . . . . . . 12  |-  ( ph  ->  A. a  e.  N  A. b  e.  N  ( a  <RR  b  -> 
( ( F `  a )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  a )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) ) ) ) )
4342ad3antrrr 492 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  A. a  e.  N  A. b  e.  N  ( a  <RR  b  ->  ( ( F `  a )  <RR  ( ( F `  b )  +  (
iota_ r  e.  RR  ( a  x.  r
)  =  1 ) )  /\  ( F `
 b )  <RR  ( ( F `  a
)  +  ( iota_ r  e.  RR  ( a  x.  r )  =  1 ) ) ) ) )
44 pitonn 7838 . . . . . . . . . . . . 13  |-  ( n  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
45 axcaucvg.n . . . . . . . . . . . . 13  |-  N  = 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
4644, 45eleqtrrdi 2271 . . . . . . . . . . . 12  |-  ( n  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
4746ad3antlr 493 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
4821, 43, 47rspcdva 2846 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  A. b  e.  N  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  b  ->  (
( F `  <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  b )  +  ( iota_ r  e.  RR  ( <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  b )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
49 pitonn 7838 . . . . . . . . . . . 12  |-  ( k  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
5049, 45eleqtrrdi 2271 . . . . . . . . . . 11  |-  ( k  e.  N.  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
5150ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  e.  N )
529, 48, 51rspcdva 2846 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( <. [
<. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  <RR  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) ) )
532, 52mpd 13 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  /\  ( F `  <. [ <. ( <. { l  |  l  <Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) ) )
5453simpld 112 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
55 axcaucvg.f . . . . . . . . 9  |-  ( ph  ->  F : N --> RR )
56 axcaucvg.g . . . . . . . . 9  |-  G  =  ( j  e.  N.  |->  ( iota_ z  e.  R.  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. j ,  1o >. ]  ~Q  } ,  { u  |  [ <. j ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. z ,  0R >. )
)
5745, 55, 22, 56axcaucvglemval 7887 . . . . . . . 8  |-  ( (
ph  /\  n  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  n ) ,  0R >. )
5857ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  n ) ,  0R >. )
5945, 55, 22, 56axcaucvglemval 7887 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  N. )  ->  ( F `
 <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  k ) ,  0R >. )
6059adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  k ) ,  0R >. )
6160adantr 276 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( G `  k ) ,  0R >. )
62 recriota 7880 . . . . . . . . . 10  |-  ( n  e.  N.  ->  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 )  = 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6362ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l  <Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 )  = 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )
6461, 63oveq12d 5887 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  ( <. ( G `  k ) ,  0R >.  +  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
6545, 55, 22, 56axcaucvglemf 7886 . . . . . . . . . . 11  |-  ( ph  ->  G : N. --> R. )
6665ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  G : N.
--> R. )
67 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  k  e.  N. )
6866, 67ffvelcdmd 5648 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  k )  e.  R. )
69 recnnpr 7538 . . . . . . . . . . 11  |-  ( n  e.  N.  ->  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P. )
70 prsrcl 7774 . . . . . . . . . . 11  |-  ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  e.  P.  ->  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
7169, 70syl 14 . . . . . . . . . 10  |-  ( n  e.  N.  ->  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
7271ad3antlr 493 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  [ <. ( <. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )
73 addresr 7827 . . . . . . . . 9  |-  ( ( ( G `  k
)  e.  R.  /\  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( <.
( G `  k
) ,  0R >.  + 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
7468, 72, 73syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( <. ( G `  k ) ,  0R >.  +  <. [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
7564, 74eqtrd 2210 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  <. ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
7654, 58, 753brtr3d 4031 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. ( G `
 n ) ,  0R >.  <RR  <. (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
77 ltresr 7829 . . . . . 6  |-  ( <.
( G `  n
) ,  0R >.  <RR  <. ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >.  <->  ( G `  n )  <R  (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
7876, 77sylib 122 . . . . 5  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  n )  <R  (
( G `  k
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
7953simprd 114 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( F `  <. [ <. ( <. { l  |  l 
<Q  [ <. k ,  1o >. ]  ~Q  } ,  { u  |  [ <. k ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  <RR  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) ) )
8058, 63oveq12d 5887 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  ( <. ( G `  n ) ,  0R >.  +  <. [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. ) )
81 simpllr 534 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  n  e.  N. )
8266, 81ffvelcdmd 5648 . . . . . . . . 9  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  n )  e.  R. )
83 addresr 7827 . . . . . . . . 9  |-  ( ( ( G `  n
)  e.  R.  /\  [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  e.  R. )  ->  ( <.
( G `  n
) ,  0R >.  + 
<. [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
8482, 72, 83syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( <. ( G `  n ) ,  0R >.  +  <. [
<. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  =  <. ( ( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
8580, 84eqtrd 2210 . . . . . . 7  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( F `  <. [ <. (
<. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >. )  +  (
iota_ r  e.  RR  ( <. [ <. ( <. { l  |  l 
<Q  [ <. n ,  1o >. ]  ~Q  } ,  { u  |  [ <. n ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ,  0R >.  x.  r )  =  1 ) )  =  <. ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
8679, 61, 853brtr3d 4031 . . . . . 6  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  <. ( G `
 k ) ,  0R >.  <RR  <. (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >. )
87 ltresr 7829 . . . . . 6  |-  ( <.
( G `  k
) ,  0R >.  <RR  <. ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ,  0R >.  <->  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
8886, 87sylib 122 . . . . 5  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) )
8978, 88jca 306 . . . 4  |-  ( ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  /\  n  <N  k
)  ->  ( ( G `  n )  <R  ( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k
)  <R  ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) )
9089ex 115 . . 3  |-  ( ( ( ph  /\  n  e.  N. )  /\  k  e.  N. )  ->  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
9190ralrimiva 2550 . 2  |-  ( (
ph  /\  n  e.  N. )  ->  A. k  e.  N.  ( n  <N  k  ->  ( ( G `
 n )  <R 
( ( G `  k )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k
)  <R  ( ( G `
 n )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
9291ralrimiva 2550 1  |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  (
n  <N  k  ->  (
( G `  n
)  <R  ( ( G `
 k )  +R 
[ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  (
( G `  n
)  +R  [ <. (
<. { l  |  l 
<Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   <.cop 3594   |^|cint 3842   class class class wbr 4000    |-> cmpt 4061   -->wf 5208   ` cfv 5212   iota_crio 5824  (class class class)co 5869   1oc1o 6404   [cec 6527   N.cnpi 7262    <N clti 7265    ~Q ceq 7269   *Qcrq 7274    <Q cltq 7275   P.cnp 7281   1Pc1p 7282    +P. cpp 7283    ~R cer 7286   R.cnr 7287   0Rc0r 7288    +R cplr 7291    <R cltr 7293   RRcr 7801   1c1 7803    + caddc 7805    <RR cltrr 7806    x. cmul 7807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-i1p 7457  df-iplp 7458  df-imp 7459  df-iltp 7460  df-enr 7716  df-nr 7717  df-plr 7718  df-mr 7719  df-ltr 7720  df-0r 7721  df-1r 7722  df-m1r 7723  df-c 7808  df-0 7809  df-1 7810  df-r 7812  df-add 7813  df-mul 7814  df-lt 7815
This theorem is referenced by:  axcaucvglemres  7889
  Copyright terms: Public domain W3C validator