ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpinvval Unicode version

Theorem grpinvval 13175
Description: The inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 7-Aug-2013.)
Hypotheses
Ref Expression
grpinvval.b  |-  B  =  ( Base `  G
)
grpinvval.p  |-  .+  =  ( +g  `  G )
grpinvval.o  |-  .0.  =  ( 0g `  G )
grpinvval.n  |-  N  =  ( invg `  G )
Assertion
Ref Expression
grpinvval  |-  ( X  e.  B  ->  ( N `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
Distinct variable groups:    y, B    y, G    y, X
Allowed substitution hints:    .+ ( y)    N( y)    .0. ( y)

Proof of Theorem grpinvval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 grpinvval.b . . . . 5  |-  B  =  ( Base `  G
)
21basmex 12737 . . . 4  |-  ( X  e.  B  ->  G  e.  _V )
3 grpinvval.p . . . . 5  |-  .+  =  ( +g  `  G )
4 grpinvval.o . . . . 5  |-  .0.  =  ( 0g `  G )
5 grpinvval.n . . . . 5  |-  N  =  ( invg `  G )
61, 3, 4, 5grpinvfvalg 13174 . . . 4  |-  ( G  e.  _V  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
72, 6syl 14 . . 3  |-  ( X  e.  B  ->  N  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  ) ) )
87fveq1d 5560 . 2  |-  ( X  e.  B  ->  ( N `  X )  =  ( ( x  e.  B  |->  ( iota_ y  e.  B  ( y 
.+  x )  =  .0.  ) ) `  X ) )
9 eqid 2196 . . 3  |-  ( x  e.  B  |->  ( iota_ y  e.  B  ( y 
.+  x )  =  .0.  ) )  =  ( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
)
10 oveq2 5930 . . . . 5  |-  ( x  =  X  ->  (
y  .+  x )  =  ( y  .+  X ) )
1110eqeq1d 2205 . . . 4  |-  ( x  =  X  ->  (
( y  .+  x
)  =  .0.  <->  ( y  .+  X )  =  .0.  ) )
1211riotabidv 5879 . . 3  |-  ( x  =  X  ->  ( iota_ y  e.  B  ( y  .+  x )  =  .0.  )  =  ( iota_ y  e.  B  ( y  .+  X
)  =  .0.  )
)
13 id 19 . . 3  |-  ( X  e.  B  ->  X  e.  B )
14 basfn 12736 . . . . . 6  |-  Base  Fn  _V
15 funfvex 5575 . . . . . . 7  |-  ( ( Fun  Base  /\  G  e. 
dom  Base )  ->  ( Base `  G )  e. 
_V )
1615funfni 5358 . . . . . 6  |-  ( (
Base  Fn  _V  /\  G  e.  _V )  ->  ( Base `  G )  e. 
_V )
1714, 2, 16sylancr 414 . . . . 5  |-  ( X  e.  B  ->  ( Base `  G )  e. 
_V )
181, 17eqeltrid 2283 . . . 4  |-  ( X  e.  B  ->  B  e.  _V )
19 riotaexg 5881 . . . 4  |-  ( B  e.  _V  ->  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  )  e. 
_V )
2018, 19syl 14 . . 3  |-  ( X  e.  B  ->  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  )  e. 
_V )
219, 12, 13, 20fvmptd3 5655 . 2  |-  ( X  e.  B  ->  (
( x  e.  B  |->  ( iota_ y  e.  B  ( y  .+  x
)  =  .0.  )
) `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
228, 21eqtrd 2229 1  |-  ( X  e.  B  ->  ( N `  X )  =  ( iota_ y  e.  B  ( y  .+  X )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    |-> cmpt 4094    Fn wfn 5253   ` cfv 5258   iota_crio 5876  (class class class)co 5922   Basecbs 12678   +g cplusg 12755   0gc0g 12927   invgcminusg 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-cnex 7970  ax-resscn 7971  ax-1re 7973  ax-addrcl 7976
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-inn 8991  df-ndx 12681  df-slot 12682  df-base 12684  df-minusg 13136
This theorem is referenced by:  grplinv  13182  isgrpinv  13186
  Copyright terms: Public domain W3C validator