ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rprene0d Unicode version

Theorem rprene0d 9339
Description: A positive real is a nonzero real number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rprene0d  |-  ( ph  ->  ( A  e.  RR  /\  A  =/=  0 ) )

Proof of Theorem rprene0d
StepHypRef Expression
1 rpred.1 . . 3  |-  ( ph  ->  A  e.  RR+ )
21rpred 9330 . 2  |-  ( ph  ->  A  e.  RR )
31rpne0d 9335 . 2  |-  ( ph  ->  A  =/=  0 )
42, 3jca 302 1  |-  ( ph  ->  ( A  e.  RR  /\  A  =/=  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1448    =/= wne 2267   RRcr 7499   0cc0 7500   RR+crp 9291
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-cnex 7586  ax-resscn 7587  ax-1re 7589  ax-addrcl 7592  ax-rnegex 7604  ax-pre-ltirr 7607
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-xp 4483  df-pnf 7674  df-mnf 7675  df-ltxr 7677  df-rp 9292
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator