| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elomssom | Unicode version | ||
| Description: A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4655. (Revised by BJ, 7-Aug-2024.) |
| Ref | Expression |
|---|---|
| elomssom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3216 |
. 2
| |
| 2 | sseq1 3216 |
. 2
| |
| 3 | sseq1 3216 |
. 2
| |
| 4 | sseq1 3216 |
. 2
| |
| 5 | 0ss 3499 |
. 2
| |
| 6 | unss 3347 |
. . . . 5
| |
| 7 | vex 2775 |
. . . . . . 7
| |
| 8 | 7 | snss 3768 |
. . . . . 6
|
| 9 | 8 | anbi2i 457 |
. . . . 5
|
| 10 | df-suc 4419 |
. . . . . 6
| |
| 11 | 10 | sseq1i 3219 |
. . . . 5
|
| 12 | 6, 9, 11 | 3bitr4i 212 |
. . . 4
|
| 13 | 12 | biimpi 120 |
. . 3
|
| 14 | 13 | expcom 116 |
. 2
|
| 15 | 1, 2, 3, 4, 5, 14 | finds 4649 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-uni 3851 df-int 3886 df-suc 4419 df-iom 4640 |
| This theorem is referenced by: elnn 4655 2ssom 6612 nninfwlpoimlemginf 7280 ennnfonelemg 12807 |
| Copyright terms: Public domain | W3C validator |