ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elomssom Unicode version

Theorem elomssom 4641
Description: A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4642. (Revised by BJ, 7-Aug-2024.)
Assertion
Ref Expression
elomssom  |-  ( A  e.  om  ->  A  C_ 
om )

Proof of Theorem elomssom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3206 . 2  |-  ( y  =  (/)  ->  ( y 
C_  om  <->  (/)  C_  om )
)
2 sseq1 3206 . 2  |-  ( y  =  x  ->  (
y  C_  om  <->  x  C_  om )
)
3 sseq1 3206 . 2  |-  ( y  =  suc  x  -> 
( y  C_  om  <->  suc  x  C_  om ) )
4 sseq1 3206 . 2  |-  ( y  =  A  ->  (
y  C_  om  <->  A  C_  om )
)
5 0ss 3489 . 2  |-  (/)  C_  om
6 unss 3337 . . . . 5  |-  ( ( x  C_  om  /\  {
x }  C_  om )  <->  ( x  u.  { x } )  C_  om )
7 vex 2766 . . . . . . 7  |-  x  e. 
_V
87snss 3757 . . . . . 6  |-  ( x  e.  om  <->  { x }  C_  om )
98anbi2i 457 . . . . 5  |-  ( ( x  C_  om  /\  x  e.  om )  <->  ( x  C_ 
om  /\  { x }  C_  om ) )
10 df-suc 4406 . . . . . 6  |-  suc  x  =  ( x  u. 
{ x } )
1110sseq1i 3209 . . . . 5  |-  ( suc  x  C_  om  <->  ( x  u.  { x } ) 
C_  om )
126, 9, 113bitr4i 212 . . . 4  |-  ( ( x  C_  om  /\  x  e.  om )  <->  suc  x  C_  om )
1312biimpi 120 . . 3  |-  ( ( x  C_  om  /\  x  e.  om )  ->  suc  x  C_  om )
1413expcom 116 . 2  |-  ( x  e.  om  ->  (
x  C_  om  ->  suc  x  C_  om )
)
151, 2, 3, 4, 5, 14finds 4636 1  |-  ( A  e.  om  ->  A  C_ 
om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167    u. cun 3155    C_ wss 3157   (/)c0 3450   {csn 3622   suc csuc 4400   omcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627
This theorem is referenced by:  elnn  4642  2ssom  6582  nninfwlpoimlemginf  7242  ennnfonelemg  12620
  Copyright terms: Public domain W3C validator