ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elomssom Unicode version

Theorem elomssom 4697
Description: A natural number ordinal is, as a set, included in the set of natural number ordinals. (Contributed by NM, 21-Jun-1998.) Extract this result from the previous proof of elnn 4698. (Revised by BJ, 7-Aug-2024.)
Assertion
Ref Expression
elomssom  |-  ( A  e.  om  ->  A  C_ 
om )

Proof of Theorem elomssom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3247 . 2  |-  ( y  =  (/)  ->  ( y 
C_  om  <->  (/)  C_  om )
)
2 sseq1 3247 . 2  |-  ( y  =  x  ->  (
y  C_  om  <->  x  C_  om )
)
3 sseq1 3247 . 2  |-  ( y  =  suc  x  -> 
( y  C_  om  <->  suc  x  C_  om ) )
4 sseq1 3247 . 2  |-  ( y  =  A  ->  (
y  C_  om  <->  A  C_  om )
)
5 0ss 3530 . 2  |-  (/)  C_  om
6 unss 3378 . . . . 5  |-  ( ( x  C_  om  /\  {
x }  C_  om )  <->  ( x  u.  { x } )  C_  om )
7 vex 2802 . . . . . . 7  |-  x  e. 
_V
87snss 3803 . . . . . 6  |-  ( x  e.  om  <->  { x }  C_  om )
98anbi2i 457 . . . . 5  |-  ( ( x  C_  om  /\  x  e.  om )  <->  ( x  C_ 
om  /\  { x }  C_  om ) )
10 df-suc 4462 . . . . . 6  |-  suc  x  =  ( x  u. 
{ x } )
1110sseq1i 3250 . . . . 5  |-  ( suc  x  C_  om  <->  ( x  u.  { x } ) 
C_  om )
126, 9, 113bitr4i 212 . . . 4  |-  ( ( x  C_  om  /\  x  e.  om )  <->  suc  x  C_  om )
1312biimpi 120 . . 3  |-  ( ( x  C_  om  /\  x  e.  om )  ->  suc  x  C_  om )
1413expcom 116 . 2  |-  ( x  e.  om  ->  (
x  C_  om  ->  suc  x  C_  om )
)
151, 2, 3, 4, 5, 14finds 4692 1  |-  ( A  e.  om  ->  A  C_ 
om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2200    u. cun 3195    C_ wss 3197   (/)c0 3491   {csn 3666   suc csuc 4456   omcom 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-suc 4462  df-iom 4683
This theorem is referenced by:  elnn  4698  2ssom  6670  nninfwlpoimlemginf  7343  ennnfonelemg  12974
  Copyright terms: Public domain W3C validator