ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-ltirr Unicode version

Theorem axpre-ltirr 7704
Description: Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 7746. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-ltirr  |-  ( A  e.  RR  ->  -.  A  <RR  A )

Proof of Theorem axpre-ltirr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elreal 7650 . . 3  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 df-rex 2422 . . 3  |-  ( E. x  e.  R.  <. x ,  0R >.  =  A  <->  E. x ( x  e. 
R.  /\  <. x ,  0R >.  =  A
) )
31, 2bitri 183 . 2  |-  ( A  e.  RR  <->  E. x
( x  e.  R.  /\ 
<. x ,  0R >.  =  A ) )
4 id 19 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  <. x ,  0R >.  =  A
)
54, 4breq12d 3942 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. x ,  0R >.  <->  A  <RR  A ) )
65notbid 656 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( -.  <.
x ,  0R >.  <RR  <. x ,  0R >.  <->  -.  A  <RR  A ) )
7 ltsosr 7586 . . . . 5  |-  <R  Or  R.
8 ltrelsr 7560 . . . . 5  |-  <R  C_  ( R.  X.  R. )
97, 8soirri 4933 . . . 4  |-  -.  x  <R  x
10 ltresr 7661 . . . 4  |-  ( <.
x ,  0R >.  <RR  <. x ,  0R >.  <->  x  <R  x )
119, 10mtbir 660 . . 3  |-  -.  <. x ,  0R >.  <RR  <. x ,  0R >.
1211a1i 9 . 2  |-  ( x  e.  R.  ->  -.  <.
x ,  0R >.  <RR  <. x ,  0R >. )
133, 6, 12gencl 2718 1  |-  ( A  e.  RR  ->  -.  A  <RR  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331   E.wex 1468    e. wcel 1480   E.wrex 2417   <.cop 3530   class class class wbr 3929   R.cnr 7119   0Rc0r 7120    <R cltr 7125   RRcr 7633    <RR cltrr 7638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-eprel 4211  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-1o 6313  df-2o 6314  df-oadd 6317  df-omul 6318  df-er 6429  df-ec 6431  df-qs 6435  df-ni 7126  df-pli 7127  df-mi 7128  df-lti 7129  df-plpq 7166  df-mpq 7167  df-enq 7169  df-nqqs 7170  df-plqqs 7171  df-mqqs 7172  df-1nqqs 7173  df-rq 7174  df-ltnqqs 7175  df-enq0 7246  df-nq0 7247  df-0nq0 7248  df-plq0 7249  df-mq0 7250  df-inp 7288  df-i1p 7289  df-iplp 7290  df-iltp 7292  df-enr 7548  df-nr 7549  df-ltr 7552  df-0r 7553  df-r 7644  df-lt 7647
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator