ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  axpre-ltirr Unicode version

Theorem axpre-ltirr 7894
Description: Real number less-than is irreflexive. Axiom for real and complex numbers, derived from set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-ltirr 7936. (Contributed by Jim Kingdon, 12-Jan-2020.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-ltirr  |-  ( A  e.  RR  ->  -.  A  <RR  A )

Proof of Theorem axpre-ltirr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elreal 7840 . . 3  |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
2 df-rex 2471 . . 3  |-  ( E. x  e.  R.  <. x ,  0R >.  =  A  <->  E. x ( x  e. 
R.  /\  <. x ,  0R >.  =  A
) )
31, 2bitri 184 . 2  |-  ( A  e.  RR  <->  E. x
( x  e.  R.  /\ 
<. x ,  0R >.  =  A ) )
4 id 19 . . . 4  |-  ( <.
x ,  0R >.  =  A  ->  <. x ,  0R >.  =  A
)
54, 4breq12d 4028 . . 3  |-  ( <.
x ,  0R >.  =  A  ->  ( <. x ,  0R >.  <RR  <. x ,  0R >.  <->  A  <RR  A ) )
65notbid 668 . 2  |-  ( <.
x ,  0R >.  =  A  ->  ( -.  <.
x ,  0R >.  <RR  <. x ,  0R >.  <->  -.  A  <RR  A ) )
7 ltsosr 7776 . . . . 5  |-  <R  Or  R.
8 ltrelsr 7750 . . . . 5  |-  <R  C_  ( R.  X.  R. )
97, 8soirri 5035 . . . 4  |-  -.  x  <R  x
10 ltresr 7851 . . . 4  |-  ( <.
x ,  0R >.  <RR  <. x ,  0R >.  <->  x  <R  x )
119, 10mtbir 672 . . 3  |-  -.  <. x ,  0R >.  <RR  <. x ,  0R >.
1211a1i 9 . 2  |-  ( x  e.  R.  ->  -.  <.
x ,  0R >.  <RR  <. x ,  0R >. )
133, 6, 12gencl 2781 1  |-  ( A  e.  RR  ->  -.  A  <RR  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1363   E.wex 1502    e. wcel 2158   E.wrex 2466   <.cop 3607   class class class wbr 4015   R.cnr 7309   0Rc0r 7310    <R cltr 7315   RRcr 7823    <RR cltrr 7828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-eprel 4301  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-irdg 6384  df-1o 6430  df-2o 6431  df-oadd 6434  df-omul 6435  df-er 6548  df-ec 6550  df-qs 6554  df-ni 7316  df-pli 7317  df-mi 7318  df-lti 7319  df-plpq 7356  df-mpq 7357  df-enq 7359  df-nqqs 7360  df-plqqs 7361  df-mqqs 7362  df-1nqqs 7363  df-rq 7364  df-ltnqqs 7365  df-enq0 7436  df-nq0 7437  df-0nq0 7438  df-plq0 7439  df-mq0 7440  df-inp 7478  df-i1p 7479  df-iplp 7480  df-iltp 7482  df-enr 7738  df-nr 7739  df-ltr 7742  df-0r 7743  df-r 7834  df-lt 7837
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator