![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > speano5 | GIF version |
Description: Version of peano5 4599 when 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
speano5 | ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-omex 14834 | . . . 4 ⊢ ω ∈ V | |
2 | bj-inex 14799 | . . . 4 ⊢ ((ω ∈ V ∧ 𝐴 ∈ 𝑉) → (ω ∩ 𝐴) ∈ V) | |
3 | 1, 2 | mpan 424 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (ω ∩ 𝐴) ∈ V) |
4 | peano5set 14832 | . . 3 ⊢ ((ω ∩ 𝐴) ∈ V → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) | |
5 | 3, 4 | syl 14 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) |
6 | 5 | 3impib 1201 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 ∈ wcel 2148 ∀wral 2455 Vcvv 2739 ∩ cin 3130 ⊆ wss 3131 ∅c0 3424 suc csuc 4367 ωcom 4591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-nul 4131 ax-pr 4211 ax-un 4435 ax-bd0 14705 ax-bdan 14707 ax-bdor 14708 ax-bdex 14711 ax-bdeq 14712 ax-bdel 14713 ax-bdsb 14714 ax-bdsep 14776 ax-infvn 14833 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-sn 3600 df-pr 3601 df-uni 3812 df-int 3847 df-suc 4373 df-iom 4592 df-bdc 14733 df-bj-ind 14819 |
This theorem is referenced by: findset 14837 |
Copyright terms: Public domain | W3C validator |