Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  speano5 GIF version

Theorem speano5 15813
Description: Version of peano5 4645 when 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
speano5 ((𝐴𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem speano5
StepHypRef Expression
1 bj-omex 15811 . . . 4 ω ∈ V
2 bj-inex 15776 . . . 4 ((ω ∈ V ∧ 𝐴𝑉) → (ω ∩ 𝐴) ∈ V)
31, 2mpan 424 . . 3 (𝐴𝑉 → (ω ∩ 𝐴) ∈ V)
4 peano5set 15809 . . 3 ((ω ∩ 𝐴) ∈ V → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴))
53, 4syl 14 . 2 (𝐴𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴))
653impib 1203 1 ((𝐴𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥𝐴 → suc 𝑥𝐴)) → ω ⊆ 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980  wcel 2175  wral 2483  Vcvv 2771  cin 3164  wss 3165  c0 3459  suc csuc 4411  ωcom 4637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-nul 4169  ax-pr 4252  ax-un 4479  ax-bd0 15682  ax-bdan 15684  ax-bdor 15685  ax-bdex 15688  ax-bdeq 15689  ax-bdel 15690  ax-bdsb 15691  ax-bdsep 15753  ax-infvn 15810
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-sn 3638  df-pr 3639  df-uni 3850  df-int 3885  df-suc 4417  df-iom 4638  df-bdc 15710  df-bj-ind 15796
This theorem is referenced by:  findset  15814
  Copyright terms: Public domain W3C validator