ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grpissubg Unicode version

Theorem grpissubg 13264
Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.)
Hypotheses
Ref Expression
grpissubg.b  |-  B  =  ( Base `  G
)
grpissubg.s  |-  S  =  ( Base `  H
)
Assertion
Ref Expression
grpissubg  |-  ( ( G  e.  Grp  /\  H  e.  Grp )  ->  ( ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) )  ->  S  e.  (SubGrp `  G
) ) )

Proof of Theorem grpissubg
Dummy variables  a  b  x  y  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . 4  |-  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  S  C_  B
)
21adantl 277 . . 3  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  S  C_  B
)
3 grpissubg.s . . . . . 6  |-  S  =  ( Base `  H
)
4 eqid 2193 . . . . . 6  |-  ( 0g
`  H )  =  ( 0g `  H
)
53, 4grpidcl 13101 . . . . 5  |-  ( H  e.  Grp  ->  ( 0g `  H )  e.  S )
6 elex2 2776 . . . . 5  |-  ( ( 0g `  H )  e.  S  ->  E. w  w  e.  S )
75, 6syl 14 . . . 4  |-  ( H  e.  Grp  ->  E. w  w  e.  S )
87ad2antlr 489 . . 3  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  E. w  w  e.  S )
9 grpmnd 13079 . . . . . . . . . . 11  |-  ( G  e.  Grp  ->  G  e.  Mnd )
10 mndmgm 13003 . . . . . . . . . . 11  |-  ( G  e.  Mnd  ->  G  e. Mgm )
119, 10syl 14 . . . . . . . . . 10  |-  ( G  e.  Grp  ->  G  e. Mgm )
12 grpmnd 13079 . . . . . . . . . . 11  |-  ( H  e.  Grp  ->  H  e.  Mnd )
13 mndmgm 13003 . . . . . . . . . . 11  |-  ( H  e.  Mnd  ->  H  e. Mgm )
1412, 13syl 14 . . . . . . . . . 10  |-  ( H  e.  Grp  ->  H  e. Mgm )
1511, 14anim12i 338 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  H  e.  Grp )  ->  ( G  e. Mgm  /\  H  e. Mgm ) )
1615adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  ( G  e. Mgm  /\  H  e. Mgm )
)
1716ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  a  e.  S )  /\  b  e.  S )  ->  ( G  e. Mgm  /\  H  e. Mgm ) )
18 simpr 110 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )
1918ad2antrr 488 . . . . . . 7  |-  ( ( ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  a  e.  S )  /\  b  e.  S )  ->  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )
20 simpr 110 . . . . . . . 8  |-  ( ( ( ( G  e. 
Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  a  e.  S )  ->  a  e.  S )
2120anim1i 340 . . . . . . 7  |-  ( ( ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  a  e.  S )  /\  b  e.  S )  ->  (
a  e.  S  /\  b  e.  S )
)
22 grpissubg.b . . . . . . . 8  |-  B  =  ( Base `  G
)
2322, 3mgmsscl 12944 . . . . . . 7  |-  ( ( ( G  e. Mgm  /\  H  e. Mgm )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  /\  ( a  e.  S  /\  b  e.  S ) )  -> 
( a ( +g  `  G ) b )  e.  S )
2417, 19, 21, 23syl3anc 1249 . . . . . 6  |-  ( ( ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  a  e.  S )  /\  b  e.  S )  ->  (
a ( +g  `  G
) b )  e.  S )
2524ralrimiva 2567 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  a  e.  S )  ->  A. b  e.  S  ( a
( +g  `  G ) b )  e.  S
)
26 simpl 109 . . . . . . . . 9  |-  ( ( G  e.  Grp  /\  H  e.  Grp )  ->  G  e.  Grp )
2726adantr 276 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  G  e.  Grp )
28 simplr 528 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  H  e.  Grp )
2922sseq2i 3206 . . . . . . . . . . 11  |-  ( S 
C_  B  <->  S  C_  ( Base `  G ) )
3029biimpi 120 . . . . . . . . . 10  |-  ( S 
C_  B  ->  S  C_  ( Base `  G
) )
3130adantr 276 . . . . . . . . 9  |-  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  S  C_  ( Base `  G ) )
3231adantl 277 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  S  C_  ( Base `  G ) )
33 ovres 6058 . . . . . . . . . . 11  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x ( ( +g  `  G )  |`  ( S  X.  S
) ) y )  =  ( x ( +g  `  G ) y ) )
3433adantl 277 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( ( +g  `  G )  |`  ( S  X.  S
) ) y )  =  ( x ( +g  `  G ) y ) )
35 oveq 5924 . . . . . . . . . . . . 13  |-  ( ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) )  ->  ( x ( +g  `  H ) y )  =  ( x ( ( +g  `  G )  |`  ( S  X.  S ) ) y ) )
3635adantl 277 . . . . . . . . . . . 12  |-  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  ( x
( +g  `  H ) y )  =  ( x ( ( +g  `  G )  |`  ( S  X.  S ) ) y ) )
3736eqcomd 2199 . . . . . . . . . . 11  |-  ( ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G )  |`  ( S  X.  S ) ) )  ->  ( x
( ( +g  `  G
)  |`  ( S  X.  S ) ) y )  =  ( x ( +g  `  H
) y ) )
3837ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( ( G  e. 
Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( ( +g  `  G )  |`  ( S  X.  S
) ) y )  =  ( x ( +g  `  H ) y ) )
3934, 38eqtr3d 2228 . . . . . . . . 9  |-  ( ( ( ( G  e. 
Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
4039ralrimivva 2576 . . . . . . . 8  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  A. x  e.  S  A. y  e.  S  ( x ( +g  `  G ) y )  =  ( x ( +g  `  H ) y ) )
4127, 28, 3, 32, 40grpinvssd 13149 . . . . . . 7  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  ( a  e.  S  ->  ( ( invg `  H ) `
 a )  =  ( ( invg `  G ) `  a
) ) )
4241imp 124 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  a  e.  S )  ->  (
( invg `  H ) `  a
)  =  ( ( invg `  G
) `  a )
)
43 eqid 2193 . . . . . . . 8  |-  ( invg `  H )  =  ( invg `  H )
443, 43grpinvcl 13120 . . . . . . 7  |-  ( ( H  e.  Grp  /\  a  e.  S )  ->  ( ( invg `  H ) `  a
)  e.  S )
4544ad4ant24 516 . . . . . 6  |-  ( ( ( ( G  e. 
Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  a  e.  S )  ->  (
( invg `  H ) `  a
)  e.  S )
4642, 45eqeltrrd 2271 . . . . 5  |-  ( ( ( ( G  e. 
Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  a  e.  S )  ->  (
( invg `  G ) `  a
)  e.  S )
4725, 46jca 306 . . . 4  |-  ( ( ( ( G  e. 
Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H )  =  ( ( +g  `  G
)  |`  ( S  X.  S ) ) ) )  /\  a  e.  S )  ->  ( A. b  e.  S  ( a ( +g  `  G ) b )  e.  S  /\  (
( invg `  G ) `  a
)  e.  S ) )
4847ralrimiva 2567 . . 3  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  A. a  e.  S  ( A. b  e.  S  ( a ( +g  `  G ) b )  e.  S  /\  (
( invg `  G ) `  a
)  e.  S ) )
49 eqid 2193 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
50 eqid 2193 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
5122, 49, 50issubg2m 13259 . . . 4  |-  ( G  e.  Grp  ->  ( S  e.  (SubGrp `  G
)  <->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. a  e.  S  ( A. b  e.  S  ( a ( +g  `  G ) b )  e.  S  /\  (
( invg `  G ) `  a
)  e.  S ) ) ) )
5251ad2antrr 488 . . 3  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  ( S  e.  (SubGrp `  G )  <->  ( S  C_  B  /\  E. w  w  e.  S  /\  A. a  e.  S  ( A. b  e.  S  ( a ( +g  `  G ) b )  e.  S  /\  (
( invg `  G ) `  a
)  e.  S ) ) ) )
532, 8, 48, 52mpbir3and 1182 . 2  |-  ( ( ( G  e.  Grp  /\  H  e.  Grp )  /\  ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) ) )  ->  S  e.  (SubGrp `  G ) )
5453ex 115 1  |-  ( ( G  e.  Grp  /\  H  e.  Grp )  ->  ( ( S  C_  B  /\  ( +g  `  H
)  =  ( ( +g  `  G )  |`  ( S  X.  S
) ) )  ->  S  e.  (SubGrp `  G
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472    C_ wss 3153    X. cxp 4657    |` cres 4661   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867  Mgmcmgm 12937   Mndcmnd 12997   Grpcgrp 13072   invgcminusg 13073  SubGrpcsubg 13237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240
This theorem is referenced by:  resgrpisgrp  13265
  Copyright terms: Public domain W3C validator