| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpissubg | Unicode version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpissubg.b |
|
| grpissubg.s |
|
| Ref | Expression |
|---|---|
| grpissubg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | grpissubg.s |
. . . . . 6
| |
| 4 | eqid 2205 |
. . . . . 6
| |
| 5 | 3, 4 | grpidcl 13361 |
. . . . 5
|
| 6 | elex2 2788 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | 7 | ad2antlr 489 |
. . 3
|
| 9 | grpmnd 13339 |
. . . . . . . . . . 11
| |
| 10 | mndmgm 13254 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . 10
|
| 12 | grpmnd 13339 |
. . . . . . . . . . 11
| |
| 13 | mndmgm 13254 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . . 10
|
| 15 | 11, 14 | anim12i 338 |
. . . . . . . . 9
|
| 16 | 15 | adantr 276 |
. . . . . . . 8
|
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | 18 | ad2antrr 488 |
. . . . . . 7
|
| 20 | simpr 110 |
. . . . . . . 8
| |
| 21 | 20 | anim1i 340 |
. . . . . . 7
|
| 22 | grpissubg.b |
. . . . . . . 8
| |
| 23 | 22, 3 | mgmsscl 13193 |
. . . . . . 7
|
| 24 | 17, 19, 21, 23 | syl3anc 1250 |
. . . . . 6
|
| 25 | 24 | ralrimiva 2579 |
. . . . 5
|
| 26 | simpl 109 |
. . . . . . . . 9
| |
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | simplr 528 |
. . . . . . . 8
| |
| 29 | 22 | sseq2i 3220 |
. . . . . . . . . . 11
|
| 30 | 29 | biimpi 120 |
. . . . . . . . . 10
|
| 31 | 30 | adantr 276 |
. . . . . . . . 9
|
| 32 | 31 | adantl 277 |
. . . . . . . 8
|
| 33 | ovres 6086 |
. . . . . . . . . . 11
| |
| 34 | 33 | adantl 277 |
. . . . . . . . . 10
|
| 35 | oveq 5950 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . 12
|
| 37 | 36 | eqcomd 2211 |
. . . . . . . . . . 11
|
| 38 | 37 | ad2antlr 489 |
. . . . . . . . . 10
|
| 39 | 34, 38 | eqtr3d 2240 |
. . . . . . . . 9
|
| 40 | 39 | ralrimivva 2588 |
. . . . . . . 8
|
| 41 | 27, 28, 3, 32, 40 | grpinvssd 13409 |
. . . . . . 7
|
| 42 | 41 | imp 124 |
. . . . . 6
|
| 43 | eqid 2205 |
. . . . . . . 8
| |
| 44 | 3, 43 | grpinvcl 13380 |
. . . . . . 7
|
| 45 | 44 | ad4ant24 516 |
. . . . . 6
|
| 46 | 42, 45 | eqeltrrd 2283 |
. . . . 5
|
| 47 | 25, 46 | jca 306 |
. . . 4
|
| 48 | 47 | ralrimiva 2579 |
. . 3
|
| 49 | eqid 2205 |
. . . . 5
| |
| 50 | eqid 2205 |
. . . . 5
| |
| 51 | 22, 49, 50 | issubg2m 13525 |
. . . 4
|
| 52 | 51 | ad2antrr 488 |
. . 3
|
| 53 | 2, 8, 48, 52 | mpbir3and 1183 |
. 2
|
| 54 | 53 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-sets 12839 df-iress 12840 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 df-minusg 13336 df-subg 13506 |
| This theorem is referenced by: resgrpisgrp 13531 |
| Copyright terms: Public domain | W3C validator |