| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpissubg | Unicode version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpissubg.b |
|
| grpissubg.s |
|
| Ref | Expression |
|---|---|
| grpissubg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | grpissubg.s |
. . . . . 6
| |
| 4 | eqid 2196 |
. . . . . 6
| |
| 5 | 3, 4 | grpidcl 13161 |
. . . . 5
|
| 6 | elex2 2779 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | 7 | ad2antlr 489 |
. . 3
|
| 9 | grpmnd 13139 |
. . . . . . . . . . 11
| |
| 10 | mndmgm 13063 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . 10
|
| 12 | grpmnd 13139 |
. . . . . . . . . . 11
| |
| 13 | mndmgm 13063 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . . 10
|
| 15 | 11, 14 | anim12i 338 |
. . . . . . . . 9
|
| 16 | 15 | adantr 276 |
. . . . . . . 8
|
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | 18 | ad2antrr 488 |
. . . . . . 7
|
| 20 | simpr 110 |
. . . . . . . 8
| |
| 21 | 20 | anim1i 340 |
. . . . . . 7
|
| 22 | grpissubg.b |
. . . . . . . 8
| |
| 23 | 22, 3 | mgmsscl 13004 |
. . . . . . 7
|
| 24 | 17, 19, 21, 23 | syl3anc 1249 |
. . . . . 6
|
| 25 | 24 | ralrimiva 2570 |
. . . . 5
|
| 26 | simpl 109 |
. . . . . . . . 9
| |
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | simplr 528 |
. . . . . . . 8
| |
| 29 | 22 | sseq2i 3210 |
. . . . . . . . . . 11
|
| 30 | 29 | biimpi 120 |
. . . . . . . . . 10
|
| 31 | 30 | adantr 276 |
. . . . . . . . 9
|
| 32 | 31 | adantl 277 |
. . . . . . . 8
|
| 33 | ovres 6063 |
. . . . . . . . . . 11
| |
| 34 | 33 | adantl 277 |
. . . . . . . . . 10
|
| 35 | oveq 5928 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . 12
|
| 37 | 36 | eqcomd 2202 |
. . . . . . . . . . 11
|
| 38 | 37 | ad2antlr 489 |
. . . . . . . . . 10
|
| 39 | 34, 38 | eqtr3d 2231 |
. . . . . . . . 9
|
| 40 | 39 | ralrimivva 2579 |
. . . . . . . 8
|
| 41 | 27, 28, 3, 32, 40 | grpinvssd 13209 |
. . . . . . 7
|
| 42 | 41 | imp 124 |
. . . . . 6
|
| 43 | eqid 2196 |
. . . . . . . 8
| |
| 44 | 3, 43 | grpinvcl 13180 |
. . . . . . 7
|
| 45 | 44 | ad4ant24 516 |
. . . . . 6
|
| 46 | 42, 45 | eqeltrrd 2274 |
. . . . 5
|
| 47 | 25, 46 | jca 306 |
. . . 4
|
| 48 | 47 | ralrimiva 2570 |
. . 3
|
| 49 | eqid 2196 |
. . . . 5
| |
| 50 | eqid 2196 |
. . . . 5
| |
| 51 | 22, 49, 50 | issubg2m 13319 |
. . . 4
|
| 52 | 51 | ad2antrr 488 |
. . 3
|
| 53 | 2, 8, 48, 52 | mpbir3and 1182 |
. 2
|
| 54 | 53 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-sets 12685 df-iress 12686 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 df-minusg 13136 df-subg 13300 |
| This theorem is referenced by: resgrpisgrp 13325 |
| Copyright terms: Public domain | W3C validator |