| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpissubg | Unicode version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpissubg.b |
|
| grpissubg.s |
|
| Ref | Expression |
|---|---|
| grpissubg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | grpissubg.s |
. . . . . 6
| |
| 4 | eqid 2229 |
. . . . . 6
| |
| 5 | 3, 4 | grpidcl 13562 |
. . . . 5
|
| 6 | elex2 2816 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | 7 | ad2antlr 489 |
. . 3
|
| 9 | grpmnd 13540 |
. . . . . . . . . . 11
| |
| 10 | mndmgm 13455 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . 10
|
| 12 | grpmnd 13540 |
. . . . . . . . . . 11
| |
| 13 | mndmgm 13455 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . . 10
|
| 15 | 11, 14 | anim12i 338 |
. . . . . . . . 9
|
| 16 | 15 | adantr 276 |
. . . . . . . 8
|
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | 18 | ad2antrr 488 |
. . . . . . 7
|
| 20 | simpr 110 |
. . . . . . . 8
| |
| 21 | 20 | anim1i 340 |
. . . . . . 7
|
| 22 | grpissubg.b |
. . . . . . . 8
| |
| 23 | 22, 3 | mgmsscl 13394 |
. . . . . . 7
|
| 24 | 17, 19, 21, 23 | syl3anc 1271 |
. . . . . 6
|
| 25 | 24 | ralrimiva 2603 |
. . . . 5
|
| 26 | simpl 109 |
. . . . . . . . 9
| |
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | simplr 528 |
. . . . . . . 8
| |
| 29 | 22 | sseq2i 3251 |
. . . . . . . . . . 11
|
| 30 | 29 | biimpi 120 |
. . . . . . . . . 10
|
| 31 | 30 | adantr 276 |
. . . . . . . . 9
|
| 32 | 31 | adantl 277 |
. . . . . . . 8
|
| 33 | ovres 6145 |
. . . . . . . . . . 11
| |
| 34 | 33 | adantl 277 |
. . . . . . . . . 10
|
| 35 | oveq 6007 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . 12
|
| 37 | 36 | eqcomd 2235 |
. . . . . . . . . . 11
|
| 38 | 37 | ad2antlr 489 |
. . . . . . . . . 10
|
| 39 | 34, 38 | eqtr3d 2264 |
. . . . . . . . 9
|
| 40 | 39 | ralrimivva 2612 |
. . . . . . . 8
|
| 41 | 27, 28, 3, 32, 40 | grpinvssd 13610 |
. . . . . . 7
|
| 42 | 41 | imp 124 |
. . . . . 6
|
| 43 | eqid 2229 |
. . . . . . . 8
| |
| 44 | 3, 43 | grpinvcl 13581 |
. . . . . . 7
|
| 45 | 44 | ad4ant24 516 |
. . . . . 6
|
| 46 | 42, 45 | eqeltrrd 2307 |
. . . . 5
|
| 47 | 25, 46 | jca 306 |
. . . 4
|
| 48 | 47 | ralrimiva 2603 |
. . 3
|
| 49 | eqid 2229 |
. . . . 5
| |
| 50 | eqid 2229 |
. . . . 5
| |
| 51 | 22, 49, 50 | issubg2m 13726 |
. . . 4
|
| 52 | 51 | ad2antrr 488 |
. . 3
|
| 53 | 2, 8, 48, 52 | mpbir3and 1204 |
. 2
|
| 54 | 53 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-pre-ltirr 8111 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 df-2 9169 df-ndx 13035 df-slot 13036 df-base 13038 df-sets 13039 df-iress 13040 df-plusg 13123 df-0g 13291 df-mgm 13389 df-sgrp 13435 df-mnd 13450 df-grp 13536 df-minusg 13537 df-subg 13707 |
| This theorem is referenced by: resgrpisgrp 13732 |
| Copyright terms: Public domain | W3C validator |