| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grpissubg | Unicode version | ||
| Description: If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.) |
| Ref | Expression |
|---|---|
| grpissubg.b |
|
| grpissubg.s |
|
| Ref | Expression |
|---|---|
| grpissubg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | grpissubg.s |
. . . . . 6
| |
| 4 | eqid 2196 |
. . . . . 6
| |
| 5 | 3, 4 | grpidcl 13233 |
. . . . 5
|
| 6 | elex2 2779 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | 7 | ad2antlr 489 |
. . 3
|
| 9 | grpmnd 13211 |
. . . . . . . . . . 11
| |
| 10 | mndmgm 13126 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | syl 14 |
. . . . . . . . . 10
|
| 12 | grpmnd 13211 |
. . . . . . . . . . 11
| |
| 13 | mndmgm 13126 |
. . . . . . . . . . 11
| |
| 14 | 12, 13 | syl 14 |
. . . . . . . . . 10
|
| 15 | 11, 14 | anim12i 338 |
. . . . . . . . 9
|
| 16 | 15 | adantr 276 |
. . . . . . . 8
|
| 17 | 16 | ad2antrr 488 |
. . . . . . 7
|
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | 18 | ad2antrr 488 |
. . . . . . 7
|
| 20 | simpr 110 |
. . . . . . . 8
| |
| 21 | 20 | anim1i 340 |
. . . . . . 7
|
| 22 | grpissubg.b |
. . . . . . . 8
| |
| 23 | 22, 3 | mgmsscl 13065 |
. . . . . . 7
|
| 24 | 17, 19, 21, 23 | syl3anc 1249 |
. . . . . 6
|
| 25 | 24 | ralrimiva 2570 |
. . . . 5
|
| 26 | simpl 109 |
. . . . . . . . 9
| |
| 27 | 26 | adantr 276 |
. . . . . . . 8
|
| 28 | simplr 528 |
. . . . . . . 8
| |
| 29 | 22 | sseq2i 3211 |
. . . . . . . . . . 11
|
| 30 | 29 | biimpi 120 |
. . . . . . . . . 10
|
| 31 | 30 | adantr 276 |
. . . . . . . . 9
|
| 32 | 31 | adantl 277 |
. . . . . . . 8
|
| 33 | ovres 6067 |
. . . . . . . . . . 11
| |
| 34 | 33 | adantl 277 |
. . . . . . . . . 10
|
| 35 | oveq 5931 |
. . . . . . . . . . . . 13
| |
| 36 | 35 | adantl 277 |
. . . . . . . . . . . 12
|
| 37 | 36 | eqcomd 2202 |
. . . . . . . . . . 11
|
| 38 | 37 | ad2antlr 489 |
. . . . . . . . . 10
|
| 39 | 34, 38 | eqtr3d 2231 |
. . . . . . . . 9
|
| 40 | 39 | ralrimivva 2579 |
. . . . . . . 8
|
| 41 | 27, 28, 3, 32, 40 | grpinvssd 13281 |
. . . . . . 7
|
| 42 | 41 | imp 124 |
. . . . . 6
|
| 43 | eqid 2196 |
. . . . . . . 8
| |
| 44 | 3, 43 | grpinvcl 13252 |
. . . . . . 7
|
| 45 | 44 | ad4ant24 516 |
. . . . . 6
|
| 46 | 42, 45 | eqeltrrd 2274 |
. . . . 5
|
| 47 | 25, 46 | jca 306 |
. . . 4
|
| 48 | 47 | ralrimiva 2570 |
. . 3
|
| 49 | eqid 2196 |
. . . . 5
| |
| 50 | eqid 2196 |
. . . . 5
| |
| 51 | 22, 49, 50 | issubg2m 13397 |
. . . 4
|
| 52 | 51 | ad2antrr 488 |
. . 3
|
| 53 | 2, 8, 48, 52 | mpbir3and 1182 |
. 2
|
| 54 | 53 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1cn 7991 ax-1re 7992 ax-icn 7993 ax-addcl 7994 ax-addrcl 7995 ax-mulcl 7996 ax-addcom 7998 ax-addass 8000 ax-i2m1 8003 ax-0lt1 8004 ax-0id 8006 ax-rnegex 8007 ax-pre-ltirr 8010 ax-pre-ltadd 8014 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8082 df-mnf 8083 df-ltxr 8085 df-inn 9010 df-2 9068 df-ndx 12708 df-slot 12709 df-base 12711 df-sets 12712 df-iress 12713 df-plusg 12795 df-0g 12962 df-mgm 13060 df-sgrp 13106 df-mnd 13121 df-grp 13207 df-minusg 13208 df-subg 13378 |
| This theorem is referenced by: resgrpisgrp 13403 |
| Copyright terms: Public domain | W3C validator |