| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrd.1 |
|
| eqsstrrd.2 |
|
| Ref | Expression |
|---|---|
| eqsstrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 |
. . 3
| |
| 2 | 1 | eqcomd 2235 |
. 2
|
| 3 | eqsstrrd.2 |
. 2
| |
| 4 | 2, 3 | eqsstrd 3260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: ssxpbm 5164 ssxp1 5165 ssxp2 5166 suppssof1 6236 tfrlemiubacc 6476 tfr1onlemubacc 6492 tfrcllemubacc 6505 oaword1 6617 phplem4dom 7023 fisseneq 7096 nnnninfeq2 7296 archnqq 7604 hashdmprop2dom 11066 imasaddfnlemg 13347 resmhm2 13521 ringidss 13992 subrg1 14195 subrgdvds 14199 subrguss 14200 subrginv 14201 islss3 14343 lspsnneg 14384 epttop 14764 metequiv2 15170 limccnpcntop 15349 limccnp2lem 15350 limccnp2cntop 15351 umgredgprv 15915 uspgrupgrushgr 15980 usgrumgruspgr 15983 nnsf 16371 |
| Copyright terms: Public domain | W3C validator |