| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrd.1 |
|
| eqsstrrd.2 |
|
| Ref | Expression |
|---|---|
| eqsstrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 |
. . 3
| |
| 2 | 1 | eqcomd 2202 |
. 2
|
| 3 | eqsstrrd.2 |
. 2
| |
| 4 | 2, 3 | eqsstrd 3219 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: ssxpbm 5105 ssxp1 5106 ssxp2 5107 suppssof1 6153 tfrlemiubacc 6388 tfr1onlemubacc 6404 tfrcllemubacc 6417 oaword1 6529 phplem4dom 6923 fisseneq 6995 nnnninfeq2 7195 archnqq 7484 imasaddfnlemg 12957 resmhm2 13120 ringidss 13585 subrg1 13787 subrgdvds 13791 subrguss 13792 subrginv 13793 islss3 13935 lspsnneg 13976 epttop 14326 metequiv2 14732 limccnpcntop 14911 limccnp2lem 14912 limccnp2cntop 14913 nnsf 15649 |
| Copyright terms: Public domain | W3C validator |