Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqsstrrd | Unicode version |
Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
Ref | Expression |
---|---|
eqsstrrd.1 | |
eqsstrrd.2 |
Ref | Expression |
---|---|
eqsstrrd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsstrrd.1 | . . 3 | |
2 | 1 | eqcomd 2163 | . 2 |
3 | eqsstrrd.2 | . 2 | |
4 | 2, 3 | eqsstrd 3164 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1335 wss 3102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-11 1486 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-in 3108 df-ss 3115 |
This theorem is referenced by: ssxpbm 5018 ssxp1 5019 ssxp2 5020 suppssof1 6043 tfrlemiubacc 6271 tfr1onlemubacc 6287 tfrcllemubacc 6300 oaword1 6411 phplem4dom 6800 fisseneq 6869 archnqq 7320 epttop 12450 metequiv2 12856 limccnpcntop 13004 limccnp2lem 13005 limccnp2cntop 13006 nnsf 13538 |
Copyright terms: Public domain | W3C validator |