| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrd.1 |
|
| eqsstrrd.2 |
|
| Ref | Expression |
|---|---|
| eqsstrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 |
. . 3
| |
| 2 | 1 | eqcomd 2211 |
. 2
|
| 3 | eqsstrrd.2 |
. 2
| |
| 4 | 2, 3 | eqsstrd 3229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: ssxpbm 5119 ssxp1 5120 ssxp2 5121 suppssof1 6178 tfrlemiubacc 6418 tfr1onlemubacc 6434 tfrcllemubacc 6447 oaword1 6559 phplem4dom 6961 fisseneq 7033 nnnninfeq2 7233 archnqq 7532 hashdmprop2dom 10991 imasaddfnlemg 13179 resmhm2 13353 ringidss 13824 subrg1 14026 subrgdvds 14030 subrguss 14031 subrginv 14032 islss3 14174 lspsnneg 14215 epttop 14595 metequiv2 15001 limccnpcntop 15180 limccnp2lem 15181 limccnp2cntop 15182 nnsf 15979 |
| Copyright terms: Public domain | W3C validator |