| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqsstrrd | Unicode version | ||
| Description: Substitution of equality into a subclass relationship. (Contributed by NM, 25-Apr-2004.) |
| Ref | Expression |
|---|---|
| eqsstrrd.1 |
|
| eqsstrrd.2 |
|
| Ref | Expression |
|---|---|
| eqsstrrd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqsstrrd.1 |
. . 3
| |
| 2 | 1 | eqcomd 2213 |
. 2
|
| 3 | eqsstrrd.2 |
. 2
| |
| 4 | 2, 3 | eqsstrd 3237 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: ssxpbm 5137 ssxp1 5138 ssxp2 5139 suppssof1 6199 tfrlemiubacc 6439 tfr1onlemubacc 6455 tfrcllemubacc 6468 oaword1 6580 phplem4dom 6984 fisseneq 7057 nnnninfeq2 7257 archnqq 7565 hashdmprop2dom 11026 imasaddfnlemg 13261 resmhm2 13435 ringidss 13906 subrg1 14108 subrgdvds 14112 subrguss 14113 subrginv 14114 islss3 14256 lspsnneg 14297 epttop 14677 metequiv2 15083 limccnpcntop 15262 limccnp2lem 15263 limccnp2cntop 15264 nnsf 16144 |
| Copyright terms: Public domain | W3C validator |