ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp1 GIF version

Theorem ssxp1 5047
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp1 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssxp1
StepHypRef Expression
1 dmxpm 4831 . . . . . 6 (∃𝑥 𝑥𝐶 → dom (𝐴 × 𝐶) = 𝐴)
21adantr 274 . . . . 5 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) = 𝐴)
3 dmss 4810 . . . . . 6 ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶))
43adantl 275 . . . . 5 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶))
52, 4eqsstrrd 3184 . . . 4 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴 ⊆ dom (𝐵 × 𝐶))
6 dmxpss 5041 . . . 4 dom (𝐵 × 𝐶) ⊆ 𝐵
75, 6sstrdi 3159 . . 3 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴𝐵)
87ex 114 . 2 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → 𝐴𝐵))
9 xpss1 4721 . 2 (𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))
108, 9impbid1 141 1 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1348  wex 1485  wcel 2141  wss 3121   × cxp 4609  dom cdm 4611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-xp 4617  df-dm 4621
This theorem is referenced by:  xpcan2m  5051
  Copyright terms: Public domain W3C validator