ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp1 GIF version

Theorem ssxp1 5102
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp1 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssxp1
StepHypRef Expression
1 dmxpm 4882 . . . . . 6 (∃𝑥 𝑥𝐶 → dom (𝐴 × 𝐶) = 𝐴)
21adantr 276 . . . . 5 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) = 𝐴)
3 dmss 4861 . . . . . 6 ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶))
43adantl 277 . . . . 5 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶))
52, 4eqsstrrd 3216 . . . 4 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴 ⊆ dom (𝐵 × 𝐶))
6 dmxpss 5096 . . . 4 dom (𝐵 × 𝐶) ⊆ 𝐵
75, 6sstrdi 3191 . . 3 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴𝐵)
87ex 115 . 2 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → 𝐴𝐵))
9 xpss1 4769 . 2 (𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))
108, 9impbid1 142 1 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wex 1503  wcel 2164  wss 3153   × cxp 4657  dom cdm 4659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-dm 4669
This theorem is referenced by:  xpcan2m  5106
  Copyright terms: Public domain W3C validator