![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssxp1 | GIF version |
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.) |
Ref | Expression |
---|---|
ssxp1 | ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmxpm 4883 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → dom (𝐴 × 𝐶) = 𝐴) | |
2 | 1 | adantr 276 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) = 𝐴) |
3 | dmss 4862 | . . . . . 6 ⊢ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶)) | |
4 | 3 | adantl 277 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶)) |
5 | 2, 4 | eqsstrrd 3217 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴 ⊆ dom (𝐵 × 𝐶)) |
6 | dmxpss 5097 | . . . 4 ⊢ dom (𝐵 × 𝐶) ⊆ 𝐵 | |
7 | 5, 6 | sstrdi 3192 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴 ⊆ 𝐵) |
8 | 7 | ex 115 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → 𝐴 ⊆ 𝐵)) |
9 | xpss1 4770 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
10 | 8, 9 | impbid1 142 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ⊆ wss 3154 × cxp 4658 dom cdm 4660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-dm 4670 |
This theorem is referenced by: xpcan2m 5107 |
Copyright terms: Public domain | W3C validator |