ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssxp1 GIF version

Theorem ssxp1 5165
Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.)
Assertion
Ref Expression
ssxp1 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴𝐵))
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem ssxp1
StepHypRef Expression
1 dmxpm 4944 . . . . . 6 (∃𝑥 𝑥𝐶 → dom (𝐴 × 𝐶) = 𝐴)
21adantr 276 . . . . 5 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) = 𝐴)
3 dmss 4922 . . . . . 6 ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶))
43adantl 277 . . . . 5 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶))
52, 4eqsstrrd 3261 . . . 4 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴 ⊆ dom (𝐵 × 𝐶))
6 dmxpss 5159 . . . 4 dom (𝐵 × 𝐶) ⊆ 𝐵
75, 6sstrdi 3236 . . 3 ((∃𝑥 𝑥𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴𝐵)
87ex 115 . 2 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → 𝐴𝐵))
9 xpss1 4829 . 2 (𝐴𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶))
108, 9impbid1 142 1 (∃𝑥 𝑥𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wex 1538  wcel 2200  wss 3197   × cxp 4717  dom cdm 4719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-dm 4729
This theorem is referenced by:  xpcan2m  5169
  Copyright terms: Public domain W3C validator