| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssxp1 | GIF version | ||
| Description: Cross product subset cancellation. (Contributed by Jim Kingdon, 14-Dec-2018.) |
| Ref | Expression |
|---|---|
| ssxp1 | ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmxpm 4944 | . . . . . 6 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → dom (𝐴 × 𝐶) = 𝐴) | |
| 2 | 1 | adantr 276 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) = 𝐴) |
| 3 | dmss 4922 | . . . . . 6 ⊢ ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶)) | |
| 4 | 3 | adantl 277 | . . . . 5 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → dom (𝐴 × 𝐶) ⊆ dom (𝐵 × 𝐶)) |
| 5 | 2, 4 | eqsstrrd 3261 | . . . 4 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴 ⊆ dom (𝐵 × 𝐶)) |
| 6 | dmxpss 5159 | . . . 4 ⊢ dom (𝐵 × 𝐶) ⊆ 𝐵 | |
| 7 | 5, 6 | sstrdi 3236 | . . 3 ⊢ ((∃𝑥 𝑥 ∈ 𝐶 ∧ (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) → 𝐴 ⊆ 𝐵) |
| 8 | 7 | ex 115 | . 2 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) → 𝐴 ⊆ 𝐵)) |
| 9 | xpss1 4829 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 × 𝐶) ⊆ (𝐵 × 𝐶)) | |
| 10 | 8, 9 | impbid1 142 | 1 ⊢ (∃𝑥 𝑥 ∈ 𝐶 → ((𝐴 × 𝐶) ⊆ (𝐵 × 𝐶) ↔ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ⊆ wss 3197 × cxp 4717 dom cdm 4719 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-dm 4729 |
| This theorem is referenced by: xpcan2m 5169 |
| Copyright terms: Public domain | W3C validator |