ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2 Unicode version

Theorem strslfv2 12665
Description: A variation on strslfv 12666 to avoid asserting that  S itself is a function, which involves sethood of all the ordered pair components of  S. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv2.s  |-  S  e. 
_V
strfv2.f  |-  Fun  `' `' S
strslfv2.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv2.n  |-  <. ( E `  ndx ) ,  C >.  e.  S
Assertion
Ref Expression
strslfv2  |-  ( C  e.  V  ->  C  =  ( E `  S ) )

Proof of Theorem strslfv2
StepHypRef Expression
1 strslfv2.e . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strfv2.s . . 3  |-  S  e. 
_V
32a1i 9 . 2  |-  ( C  e.  V  ->  S  e.  _V )
4 strfv2.f . . 3  |-  Fun  `' `' S
54a1i 9 . 2  |-  ( C  e.  V  ->  Fun  `' `' S )
6 strfv2.n . . 3  |-  <. ( E `  ndx ) ,  C >.  e.  S
76a1i 9 . 2  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  S
)
8 id 19 . 2  |-  ( C  e.  V  ->  C  e.  V )
91, 3, 5, 7, 8strslfv2d 12664 1  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   _Vcvv 2760   <.cop 3622   `'ccnv 4659   Fun wfun 5249   ` cfv 5255   NNcn 8984   ndxcnx 12618  Slot cslot 12620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fv 5263  df-slot 12625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator