ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2 Unicode version

Theorem strslfv2 12470
Description: A variation on strslfv 12471 to avoid asserting that  S itself is a function, which involves sethood of all the ordered pair components of  S. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv2.s  |-  S  e. 
_V
strfv2.f  |-  Fun  `' `' S
strslfv2.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv2.n  |-  <. ( E `  ndx ) ,  C >.  e.  S
Assertion
Ref Expression
strslfv2  |-  ( C  e.  V  ->  C  =  ( E `  S ) )

Proof of Theorem strslfv2
StepHypRef Expression
1 strslfv2.e . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strfv2.s . . 3  |-  S  e. 
_V
32a1i 9 . 2  |-  ( C  e.  V  ->  S  e.  _V )
4 strfv2.f . . 3  |-  Fun  `' `' S
54a1i 9 . 2  |-  ( C  e.  V  ->  Fun  `' `' S )
6 strfv2.n . . 3  |-  <. ( E `  ndx ) ,  C >.  e.  S
76a1i 9 . 2  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  S
)
8 id 19 . 2  |-  ( C  e.  V  ->  C  e.  V )
91, 3, 5, 7, 8strslfv2d 12469 1  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   _Vcvv 2735   <.cop 3592   `'ccnv 4619   Fun wfun 5202   ` cfv 5208   NNcn 8890   ndxcnx 12424  Slot cslot 12426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fv 5216  df-slot 12431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator