ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2 Unicode version

Theorem strslfv2 13071
Description: A variation on strslfv 13072 to avoid asserting that  S itself is a function, which involves sethood of all the ordered pair components of  S. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv2.s  |-  S  e. 
_V
strfv2.f  |-  Fun  `' `' S
strslfv2.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strfv2.n  |-  <. ( E `  ndx ) ,  C >.  e.  S
Assertion
Ref Expression
strslfv2  |-  ( C  e.  V  ->  C  =  ( E `  S ) )

Proof of Theorem strslfv2
StepHypRef Expression
1 strslfv2.e . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strfv2.s . . 3  |-  S  e. 
_V
32a1i 9 . 2  |-  ( C  e.  V  ->  S  e.  _V )
4 strfv2.f . . 3  |-  Fun  `' `' S
54a1i 9 . 2  |-  ( C  e.  V  ->  Fun  `' `' S )
6 strfv2.n . . 3  |-  <. ( E `  ndx ) ,  C >.  e.  S
76a1i 9 . 2  |-  ( C  e.  V  ->  <. ( E `  ndx ) ,  C >.  e.  S
)
8 id 19 . 2  |-  ( C  e.  V  ->  C  e.  V )
91, 3, 5, 7, 8strslfv2d 13070 1  |-  ( C  e.  V  ->  C  =  ( E `  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799   <.cop 3669   `'ccnv 4717   Fun wfun 5311   ` cfv 5317   NNcn 9106   ndxcnx 13024  Slot cslot 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-slot 13031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator