ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2 GIF version

Theorem strslfv2 13042
Description: A variation on strslfv 13043 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv2.s 𝑆 ∈ V
strfv2.f Fun 𝑆
strslfv2.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfv2.n ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
Assertion
Ref Expression
strslfv2 (𝐶𝑉𝐶 = (𝐸𝑆))

Proof of Theorem strslfv2
StepHypRef Expression
1 strslfv2.e . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
2 strfv2.s . . 3 𝑆 ∈ V
32a1i 9 . 2 (𝐶𝑉𝑆 ∈ V)
4 strfv2.f . . 3 Fun 𝑆
54a1i 9 . 2 (𝐶𝑉 → Fun 𝑆)
6 strfv2.n . . 3 ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
76a1i 9 . 2 (𝐶𝑉 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
8 id 19 . 2 (𝐶𝑉𝐶𝑉)
91, 3, 5, 7, 8strslfv2d 13041 1 (𝐶𝑉𝐶 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  Vcvv 2779  cop 3649  ccnv 4695  Fun wfun 5288  cfv 5294  cn 9078  ndxcnx 12995  Slot cslot 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fv 5302  df-slot 13002
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator