ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2 GIF version

Theorem strslfv2 12509
Description: A variation on strslfv 12510 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv2.s 𝑆 ∈ V
strfv2.f Fun ◑◑𝑆
strslfv2.e (𝐸 = Slot (πΈβ€˜ndx) ∧ (πΈβ€˜ndx) ∈ β„•)
strfv2.n ⟨(πΈβ€˜ndx), 𝐢⟩ ∈ 𝑆
Assertion
Ref Expression
strslfv2 (𝐢 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘†))

Proof of Theorem strslfv2
StepHypRef Expression
1 strslfv2.e . 2 (𝐸 = Slot (πΈβ€˜ndx) ∧ (πΈβ€˜ndx) ∈ β„•)
2 strfv2.s . . 3 𝑆 ∈ V
32a1i 9 . 2 (𝐢 ∈ 𝑉 β†’ 𝑆 ∈ V)
4 strfv2.f . . 3 Fun ◑◑𝑆
54a1i 9 . 2 (𝐢 ∈ 𝑉 β†’ Fun ◑◑𝑆)
6 strfv2.n . . 3 ⟨(πΈβ€˜ndx), 𝐢⟩ ∈ 𝑆
76a1i 9 . 2 (𝐢 ∈ 𝑉 β†’ ⟨(πΈβ€˜ndx), 𝐢⟩ ∈ 𝑆)
8 id 19 . 2 (𝐢 ∈ 𝑉 β†’ 𝐢 ∈ 𝑉)
91, 3, 5, 7, 8strslfv2d 12508 1 (𝐢 ∈ 𝑉 β†’ 𝐢 = (πΈβ€˜π‘†))
Colors of variables: wff set class
Syntax hints:   β†’ wi 4   ∧ wa 104   = wceq 1353   ∈ wcel 2148  Vcvv 2739  βŸ¨cop 3597  β—‘ccnv 4627  Fun wfun 5212  β€˜cfv 5218  β„•cn 8922  ndxcnx 12462  Slot cslot 12464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fv 5226  df-slot 12469
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator