Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strslfv2 | GIF version |
Description: A variation on strslfv 12471 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strfv2.s | ⊢ 𝑆 ∈ V |
strfv2.f | ⊢ Fun ◡◡𝑆 |
strslfv2.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfv2.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
Ref | Expression |
---|---|
strslfv2 | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfv2.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | strfv2.s | . . 3 ⊢ 𝑆 ∈ V | |
3 | 2 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝑆 ∈ V) |
4 | strfv2.f | . . 3 ⊢ Fun ◡◡𝑆 | |
5 | 4 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → Fun ◡◡𝑆) |
6 | strfv2.n | . . 3 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
7 | 6 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
8 | id 19 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉) | |
9 | 1, 3, 5, 7, 8 | strslfv2d 12469 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 Vcvv 2735 〈cop 3592 ◡ccnv 4619 Fun wfun 5202 ‘cfv 5208 ℕcn 8890 ndxcnx 12424 Slot cslot 12426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-sbc 2961 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fv 5216 df-slot 12431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |