ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv2 GIF version

Theorem strslfv2 12920
Description: A variation on strslfv 12921 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv2.s 𝑆 ∈ V
strfv2.f Fun 𝑆
strslfv2.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfv2.n ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
Assertion
Ref Expression
strslfv2 (𝐶𝑉𝐶 = (𝐸𝑆))

Proof of Theorem strslfv2
StepHypRef Expression
1 strslfv2.e . 2 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
2 strfv2.s . . 3 𝑆 ∈ V
32a1i 9 . 2 (𝐶𝑉𝑆 ∈ V)
4 strfv2.f . . 3 Fun 𝑆
54a1i 9 . 2 (𝐶𝑉 → Fun 𝑆)
6 strfv2.n . . 3 ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
76a1i 9 . 2 (𝐶𝑉 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
8 id 19 . 2 (𝐶𝑉𝐶𝑉)
91, 3, 5, 7, 8strslfv2d 12919 1 (𝐶𝑉𝐶 = (𝐸𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  Vcvv 2773  cop 3637  ccnv 4678  Fun wfun 5270  cfv 5276  cn 9043  ndxcnx 12873  Slot cslot 12875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fv 5284  df-slot 12880
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator