![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslfv2 | GIF version |
Description: A variation on strslfv 12666 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strfv2.s | ⊢ 𝑆 ∈ V |
strfv2.f | ⊢ Fun ◡◡𝑆 |
strslfv2.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfv2.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
Ref | Expression |
---|---|
strslfv2 | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfv2.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | strfv2.s | . . 3 ⊢ 𝑆 ∈ V | |
3 | 2 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝑆 ∈ V) |
4 | strfv2.f | . . 3 ⊢ Fun ◡◡𝑆 | |
5 | 4 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → Fun ◡◡𝑆) |
6 | strfv2.n | . . 3 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
7 | 6 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
8 | id 19 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉) | |
9 | 1, 3, 5, 7, 8 | strslfv2d 12664 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3622 ◡ccnv 4659 Fun wfun 5249 ‘cfv 5255 ℕcn 8984 ndxcnx 12618 Slot cslot 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-iota 5216 df-fun 5257 df-fv 5263 df-slot 12625 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |