![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslfv2 | GIF version |
Description: A variation on strslfv 11785 to avoid asserting that 𝑆 itself is a function, which involves sethood of all the ordered pair components of 𝑆. (Contributed by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strfv2.s | ⊢ 𝑆 ∈ V |
strfv2.f | ⊢ Fun ◡◡𝑆 |
strslfv2.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfv2.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
Ref | Expression |
---|---|
strslfv2 | ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslfv2.e | . 2 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | strfv2.s | . . 3 ⊢ 𝑆 ∈ V | |
3 | 2 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝑆 ∈ V) |
4 | strfv2.f | . . 3 ⊢ Fun ◡◡𝑆 | |
5 | 4 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → Fun ◡◡𝑆) |
6 | strfv2.n | . . 3 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
7 | 6 | a1i 9 | . 2 ⊢ (𝐶 ∈ 𝑉 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
8 | id 19 | . 2 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ 𝑉) | |
9 | 1, 3, 5, 7, 8 | strslfv2d 11783 | 1 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1299 ∈ wcel 1448 Vcvv 2641 〈cop 3477 ◡ccnv 4476 Fun wfun 5053 ‘cfv 5059 ℕcn 8578 ndxcnx 11738 Slot cslot 11740 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ral 2380 df-rex 2381 df-v 2643 df-sbc 2863 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-iota 5024 df-fun 5061 df-fv 5067 df-slot 11745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |