ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslss Unicode version

Theorem strslss 13075
Description: Propagate component extraction to a structure  T from a subset structure  S. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypotheses
Ref Expression
strss.t  |-  T  e. 
_V
strss.f  |-  Fun  T
strss.s  |-  S  C_  T
strslss.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strss.n  |-  <. ( E `  ndx ) ,  C >.  e.  S
Assertion
Ref Expression
strslss  |-  ( E `
 T )  =  ( E `  S
)

Proof of Theorem strslss
StepHypRef Expression
1 strslss.e . . 3  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strss.t . . . 4  |-  T  e. 
_V
32a1i 9 . . 3  |-  ( T. 
->  T  e.  _V )
4 strss.f . . . 4  |-  Fun  T
54a1i 9 . . 3  |-  ( T. 
->  Fun  T )
6 strss.s . . . 4  |-  S  C_  T
76a1i 9 . . 3  |-  ( T. 
->  S  C_  T )
8 strss.n . . . 4  |-  <. ( E `  ndx ) ,  C >.  e.  S
98a1i 9 . . 3  |-  ( T. 
->  <. ( E `  ndx ) ,  C >.  e.  S )
101, 3, 5, 7, 9strslssd 13074 . 2  |-  ( T. 
->  ( E `  T
)  =  ( E `
 S ) )
1110mptru 1404 1  |-  ( E `
 T )  =  ( E `  S
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1395   T. wtru 1396    e. wcel 2200   _Vcvv 2799    C_ wss 3197   <.cop 3669   Fun wfun 5311   ` cfv 5317   NNcn 9106   ndxcnx 13024  Slot cslot 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fv 5325  df-slot 13031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator