ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslss Unicode version

Theorem strslss 12995
Description: Propagate component extraction to a structure  T from a subset structure  S. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypotheses
Ref Expression
strss.t  |-  T  e. 
_V
strss.f  |-  Fun  T
strss.s  |-  S  C_  T
strslss.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strss.n  |-  <. ( E `  ndx ) ,  C >.  e.  S
Assertion
Ref Expression
strslss  |-  ( E `
 T )  =  ( E `  S
)

Proof of Theorem strslss
StepHypRef Expression
1 strslss.e . . 3  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strss.t . . . 4  |-  T  e. 
_V
32a1i 9 . . 3  |-  ( T. 
->  T  e.  _V )
4 strss.f . . . 4  |-  Fun  T
54a1i 9 . . 3  |-  ( T. 
->  Fun  T )
6 strss.s . . . 4  |-  S  C_  T
76a1i 9 . . 3  |-  ( T. 
->  S  C_  T )
8 strss.n . . . 4  |-  <. ( E `  ndx ) ,  C >.  e.  S
98a1i 9 . . 3  |-  ( T. 
->  <. ( E `  ndx ) ,  C >.  e.  S )
101, 3, 5, 7, 9strslssd 12994 . 2  |-  ( T. 
->  ( E `  T
)  =  ( E `
 S ) )
1110mptru 1382 1  |-  ( E `
 T )  =  ( E `  S
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1373   T. wtru 1374    e. wcel 2178   _Vcvv 2776    C_ wss 3174   <.cop 3646   Fun wfun 5284   ` cfv 5290   NNcn 9071   ndxcnx 12944  Slot cslot 12946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fv 5298  df-slot 12951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator