ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslss Unicode version

Theorem strslss 12020
Description: Propagate component extraction to a structure  T from a subset structure  S. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypotheses
Ref Expression
strss.t  |-  T  e. 
_V
strss.f  |-  Fun  T
strss.s  |-  S  C_  T
strslss.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strss.n  |-  <. ( E `  ndx ) ,  C >.  e.  S
Assertion
Ref Expression
strslss  |-  ( E `
 T )  =  ( E `  S
)

Proof of Theorem strslss
StepHypRef Expression
1 strslss.e . . 3  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strss.t . . . 4  |-  T  e. 
_V
32a1i 9 . . 3  |-  ( T. 
->  T  e.  _V )
4 strss.f . . . 4  |-  Fun  T
54a1i 9 . . 3  |-  ( T. 
->  Fun  T )
6 strss.s . . . 4  |-  S  C_  T
76a1i 9 . . 3  |-  ( T. 
->  S  C_  T )
8 strss.n . . . 4  |-  <. ( E `  ndx ) ,  C >.  e.  S
98a1i 9 . . 3  |-  ( T. 
->  <. ( E `  ndx ) ,  C >.  e.  S )
101, 3, 5, 7, 9strslssd 12019 . 2  |-  ( T. 
->  ( E `  T
)  =  ( E `
 S ) )
1110mptru 1340 1  |-  ( E `
 T )  =  ( E `  S
)
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1331   T. wtru 1332    e. wcel 1480   _Vcvv 2686    C_ wss 3071   <.cop 3530   Fun wfun 5117   ` cfv 5123   NNcn 8732   ndxcnx 11970  Slot cslot 11972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-iota 5088  df-fun 5125  df-fv 5131  df-slot 11977
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator