| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strslss | GIF version | ||
| Description: Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.) |
| Ref | Expression |
|---|---|
| strss.t | ⊢ 𝑇 ∈ V |
| strss.f | ⊢ Fun 𝑇 |
| strss.s | ⊢ 𝑆 ⊆ 𝑇 |
| strslss.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| strss.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
| Ref | Expression |
|---|---|
| strslss | ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strslss.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 2 | strss.t | . . . 4 ⊢ 𝑇 ∈ V | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → 𝑇 ∈ V) |
| 4 | strss.f | . . . 4 ⊢ Fun 𝑇 | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Fun 𝑇) |
| 6 | strss.s | . . . 4 ⊢ 𝑆 ⊆ 𝑇 | |
| 7 | 6 | a1i 9 | . . 3 ⊢ (⊤ → 𝑆 ⊆ 𝑇) |
| 8 | strss.n | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
| 9 | 8 | a1i 9 | . . 3 ⊢ (⊤ → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| 10 | 1, 3, 5, 7, 9 | strslssd 12725 | . 2 ⊢ (⊤ → (𝐸‘𝑇) = (𝐸‘𝑆)) |
| 11 | 10 | mptru 1373 | 1 ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 〈cop 3625 Fun wfun 5252 ‘cfv 5258 ℕcn 8990 ndxcnx 12675 Slot cslot 12677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-slot 12682 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |