ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslss GIF version

Theorem strslss 13075
Description: Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypotheses
Ref Expression
strss.t 𝑇 ∈ V
strss.f Fun 𝑇
strss.s 𝑆𝑇
strslss.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strss.n ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
Assertion
Ref Expression
strslss (𝐸𝑇) = (𝐸𝑆)

Proof of Theorem strslss
StepHypRef Expression
1 strslss.e . . 3 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
2 strss.t . . . 4 𝑇 ∈ V
32a1i 9 . . 3 (⊤ → 𝑇 ∈ V)
4 strss.f . . . 4 Fun 𝑇
54a1i 9 . . 3 (⊤ → Fun 𝑇)
6 strss.s . . . 4 𝑆𝑇
76a1i 9 . . 3 (⊤ → 𝑆𝑇)
8 strss.n . . . 4 ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆
98a1i 9 . . 3 (⊤ → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
101, 3, 5, 7, 9strslssd 13074 . 2 (⊤ → (𝐸𝑇) = (𝐸𝑆))
1110mptru 1404 1 (𝐸𝑇) = (𝐸𝑆)
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wtru 1396  wcel 2200  Vcvv 2799  wss 3197  cop 3669  Fun wfun 5311  cfv 5317  cn 9106  ndxcnx 13024  Slot cslot 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fv 5325  df-slot 13031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator