Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strslss | GIF version |
Description: Propagate component extraction to a structure 𝑇 from a subset structure 𝑆. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.) |
Ref | Expression |
---|---|
strss.t | ⊢ 𝑇 ∈ V |
strss.f | ⊢ Fun 𝑇 |
strss.s | ⊢ 𝑆 ⊆ 𝑇 |
strslss.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strss.n | ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 |
Ref | Expression |
---|---|
strslss | ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslss.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
2 | strss.t | . . . 4 ⊢ 𝑇 ∈ V | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → 𝑇 ∈ V) |
4 | strss.f | . . . 4 ⊢ Fun 𝑇 | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → Fun 𝑇) |
6 | strss.s | . . . 4 ⊢ 𝑆 ⊆ 𝑇 | |
7 | 6 | a1i 9 | . . 3 ⊢ (⊤ → 𝑆 ⊆ 𝑇) |
8 | strss.n | . . . 4 ⊢ 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 | |
9 | 8 | a1i 9 | . . 3 ⊢ (⊤ → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
10 | 1, 3, 5, 7, 9 | strslssd 12462 | . 2 ⊢ (⊤ → (𝐸‘𝑇) = (𝐸‘𝑆)) |
11 | 10 | mptru 1357 | 1 ⊢ (𝐸‘𝑇) = (𝐸‘𝑆) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 〈cop 3586 Fun wfun 5192 ‘cfv 5198 ℕcn 8878 ndxcnx 12413 Slot cslot 12415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fv 5206 df-slot 12420 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |