![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslss | GIF version |
Description: Propagate component extraction to a structure π from a subset structure π. (Contributed by Mario Carneiro, 11-Oct-2013.) (Revised by Jim Kingdon, 31-Jan-2023.) |
Ref | Expression |
---|---|
strss.t | β’ π β V |
strss.f | β’ Fun π |
strss.s | β’ π β π |
strslss.e | β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) |
strss.n | β’ β¨(πΈβndx), πΆβ© β π |
Ref | Expression |
---|---|
strslss | β’ (πΈβπ) = (πΈβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslss.e | . . 3 β’ (πΈ = Slot (πΈβndx) β§ (πΈβndx) β β) | |
2 | strss.t | . . . 4 β’ π β V | |
3 | 2 | a1i 9 | . . 3 β’ (β€ β π β V) |
4 | strss.f | . . . 4 β’ Fun π | |
5 | 4 | a1i 9 | . . 3 β’ (β€ β Fun π) |
6 | strss.s | . . . 4 β’ π β π | |
7 | 6 | a1i 9 | . . 3 β’ (β€ β π β π) |
8 | strss.n | . . . 4 β’ β¨(πΈβndx), πΆβ© β π | |
9 | 8 | a1i 9 | . . 3 β’ (β€ β β¨(πΈβndx), πΆβ© β π) |
10 | 1, 3, 5, 7, 9 | strslssd 12511 | . 2 β’ (β€ β (πΈβπ) = (πΈβπ)) |
11 | 10 | mptru 1362 | 1 β’ (πΈβπ) = (πΈβπ) |
Colors of variables: wff set class |
Syntax hints: β§ wa 104 = wceq 1353 β€wtru 1354 β wcel 2148 Vcvv 2739 β wss 3131 β¨cop 3597 Fun wfun 5212 βcfv 5218 βcn 8921 ndxcnx 12461 Slot cslot 12463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fv 5226 df-slot 12468 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |