ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslssd Unicode version

Theorem strslssd 13079
Description: Deduction version of strslss 13080. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypotheses
Ref Expression
strslssd.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strssd.t  |-  ( ph  ->  T  e.  V )
strssd.f  |-  ( ph  ->  Fun  T )
strssd.s  |-  ( ph  ->  S  C_  T )
strssd.n  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
Assertion
Ref Expression
strslssd  |-  ( ph  ->  ( E `  T
)  =  ( E `
 S ) )

Proof of Theorem strslssd
StepHypRef Expression
1 strslssd.e . . 3  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strssd.t . . 3  |-  ( ph  ->  T  e.  V )
3 strssd.f . . 3  |-  ( ph  ->  Fun  T )
4 strssd.s . . . 4  |-  ( ph  ->  S  C_  T )
5 strssd.n . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
64, 5sseldd 3225 . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  T )
71, 2, 3, 6strslfvd 13074 . 2  |-  ( ph  ->  C  =  ( E `
 T ) )
82, 4ssexd 4224 . . 3  |-  ( ph  ->  S  e.  _V )
9 funss 5337 . . . 4  |-  ( S 
C_  T  ->  ( Fun  T  ->  Fun  S ) )
104, 3, 9sylc 62 . . 3  |-  ( ph  ->  Fun  S )
111, 8, 10, 5strslfvd 13074 . 2  |-  ( ph  ->  C  =  ( E `
 S ) )
127, 11eqtr3d 2264 1  |-  ( ph  ->  ( E `  T
)  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   _Vcvv 2799    C_ wss 3197   <.cop 3669   Fun wfun 5312   ` cfv 5318   NNcn 9110   ndxcnx 13029  Slot cslot 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-slot 13036
This theorem is referenced by:  strslss  13080
  Copyright terms: Public domain W3C validator