![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslssd | Unicode version |
Description: Deduction version of strslss 12669. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.) |
Ref | Expression |
---|---|
strslssd.e |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
strssd.t |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
strssd.f |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
strssd.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
strssd.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
strslssd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strslssd.e |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | strssd.t |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | strssd.f |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | strssd.s |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | strssd.n |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | sseldd 3181 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 1, 2, 3, 6 | strslfvd 12663 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 2, 4 | ssexd 4170 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | funss 5274 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 4, 3, 9 | sylc 62 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 1, 8, 10, 5 | strslfvd 12663 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 7, 11 | eqtr3d 2228 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fv 5263 df-slot 12625 |
This theorem is referenced by: strslss 12669 |
Copyright terms: Public domain | W3C validator |