ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslssd Unicode version

Theorem strslssd 12879
Description: Deduction version of strslss 12880. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Jim Kingdon, 31-Jan-2023.)
Hypotheses
Ref Expression
strslssd.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
strssd.t  |-  ( ph  ->  T  e.  V )
strssd.f  |-  ( ph  ->  Fun  T )
strssd.s  |-  ( ph  ->  S  C_  T )
strssd.n  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
Assertion
Ref Expression
strslssd  |-  ( ph  ->  ( E `  T
)  =  ( E `
 S ) )

Proof of Theorem strslssd
StepHypRef Expression
1 strslssd.e . . 3  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 strssd.t . . 3  |-  ( ph  ->  T  e.  V )
3 strssd.f . . 3  |-  ( ph  ->  Fun  T )
4 strssd.s . . . 4  |-  ( ph  ->  S  C_  T )
5 strssd.n . . . 4  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  S )
64, 5sseldd 3194 . . 3  |-  ( ph  -> 
<. ( E `  ndx ) ,  C >.  e.  T )
71, 2, 3, 6strslfvd 12874 . 2  |-  ( ph  ->  C  =  ( E `
 T ) )
82, 4ssexd 4184 . . 3  |-  ( ph  ->  S  e.  _V )
9 funss 5290 . . . 4  |-  ( S 
C_  T  ->  ( Fun  T  ->  Fun  S ) )
104, 3, 9sylc 62 . . 3  |-  ( ph  ->  Fun  S )
111, 8, 10, 5strslfvd 12874 . 2  |-  ( ph  ->  C  =  ( E `
 S ) )
127, 11eqtr3d 2240 1  |-  ( ph  ->  ( E `  T
)  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   <.cop 3636   Fun wfun 5265   ` cfv 5271   NNcn 9036   ndxcnx 12829  Slot cslot 12831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-slot 12836
This theorem is referenced by:  strslss  12880
  Copyright terms: Public domain W3C validator