ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structfung GIF version

Theorem structfung 12411
Description: The converse of the converse of a structure is a function. Closed form of structfun 12412. (Contributed by AV, 12-Nov-2021.)
Assertion
Ref Expression
structfung (𝐹 Struct 𝑋 → Fun 𝐹)

Proof of Theorem structfung
StepHypRef Expression
1 structn0fun 12407 . 2 (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
2 structcnvcnv 12410 . . 3 (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))
32funeqd 5210 . 2 (𝐹 Struct 𝑋 → (Fun 𝐹 ↔ Fun (𝐹 ∖ {∅})))
41, 3mpbird 166 1 (𝐹 Struct 𝑋 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  cdif 3113  c0 3409  {csn 3576   class class class wbr 3982  ccnv 4603  Fun wfun 5182   Struct cstr 12390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-struct 12396
This theorem is referenced by:  structfun  12412  opelstrsl  12491
  Copyright terms: Public domain W3C validator