Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > structfung | GIF version |
Description: The converse of the converse of a structure is a function. Closed form of structfun 12434. (Contributed by AV, 12-Nov-2021.) |
Ref | Expression |
---|---|
structfung | ⊢ (𝐹 Struct 𝑋 → Fun ◡◡𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | structn0fun 12429 | . 2 ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) | |
2 | structcnvcnv 12432 | . . 3 ⊢ (𝐹 Struct 𝑋 → ◡◡𝐹 = (𝐹 ∖ {∅})) | |
3 | 2 | funeqd 5220 | . 2 ⊢ (𝐹 Struct 𝑋 → (Fun ◡◡𝐹 ↔ Fun (𝐹 ∖ {∅}))) |
4 | 1, 3 | mpbird 166 | 1 ⊢ (𝐹 Struct 𝑋 → Fun ◡◡𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∖ cdif 3118 ∅c0 3414 {csn 3583 class class class wbr 3989 ◡ccnv 4610 Fun wfun 5192 Struct cstr 12412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-struct 12418 |
This theorem is referenced by: structfun 12434 opelstrsl 12514 |
Copyright terms: Public domain | W3C validator |