ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structfung GIF version

Theorem structfung 13015
Description: The converse of the converse of a structure is a function. Closed form of structfun 13016. (Contributed by AV, 12-Nov-2021.)
Assertion
Ref Expression
structfung (𝐹 Struct 𝑋 → Fun 𝐹)

Proof of Theorem structfung
StepHypRef Expression
1 structn0fun 13011 . 2 (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
2 structcnvcnv 13014 . . 3 (𝐹 Struct 𝑋𝐹 = (𝐹 ∖ {∅}))
32funeqd 5316 . 2 (𝐹 Struct 𝑋 → (Fun 𝐹 ↔ Fun (𝐹 ∖ {∅})))
41, 3mpbird 167 1 (𝐹 Struct 𝑋 → Fun 𝐹)
Colors of variables: wff set class
Syntax hints:  wi 4  cdif 3174  c0 3471  {csn 3646   class class class wbr 4062  ccnv 4695  Fun wfun 5288   Struct cstr 12994
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-iota 5254  df-fun 5296  df-fv 5302  df-struct 13000
This theorem is referenced by:  structfun  13016  strslfv3  13044  opelstrsl  13113
  Copyright terms: Public domain W3C validator