ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structn0fun Unicode version

Theorem structn0fun 13053
Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.)
Assertion
Ref Expression
structn0fun  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )

Proof of Theorem structn0fun
StepHypRef Expression
1 isstruct2im 13050 . 2  |-  ( F Struct  X  ->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) )
21simp2d 1034 1  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200    \ cdif 3194    i^i cin 3196    C_ wss 3197   (/)c0 3491   {csn 3666   class class class wbr 4083    X. cxp 4717   dom cdm 4719   Fun wfun 5312   ` cfv 5318    <_ cle 8190   NNcn 9118   ...cfz 10212   Struct cstr 13036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-struct 13042
This theorem is referenced by:  structcnvcnv  13056  structfung  13057  setsn0fun  13077  basvtxval2dom  15843  edgfiedgval2dom  15844  structiedg0val  15849
  Copyright terms: Public domain W3C validator