ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structn0fun Unicode version

Theorem structn0fun 12691
Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.)
Assertion
Ref Expression
structn0fun  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )

Proof of Theorem structn0fun
StepHypRef Expression
1 isstruct2im 12688 . 2  |-  ( F Struct  X  ->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) )
21simp2d 1012 1  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167    \ cdif 3154    i^i cin 3156    C_ wss 3157   (/)c0 3450   {csn 3622   class class class wbr 4033    X. cxp 4661   dom cdm 4663   Fun wfun 5252   ` cfv 5258    <_ cle 8062   NNcn 8990   ...cfz 10083   Struct cstr 12674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-struct 12680
This theorem is referenced by:  structcnvcnv  12694  structfung  12695  setsn0fun  12715
  Copyright terms: Public domain W3C validator