ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structn0fun Unicode version

Theorem structn0fun 12634
Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.)
Assertion
Ref Expression
structn0fun  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )

Proof of Theorem structn0fun
StepHypRef Expression
1 isstruct2im 12631 . 2  |-  ( F Struct  X  ->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) )
21simp2d 1012 1  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2164    \ cdif 3151    i^i cin 3153    C_ wss 3154   (/)c0 3447   {csn 3619   class class class wbr 4030    X. cxp 4658   dom cdm 4660   Fun wfun 5249   ` cfv 5255    <_ cle 8057   NNcn 8984   ...cfz 10077   Struct cstr 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-struct 12623
This theorem is referenced by:  structcnvcnv  12637  structfung  12638  setsn0fun  12658
  Copyright terms: Public domain W3C validator