Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > structn0fun | Unicode version |
Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.) |
Ref | Expression |
---|---|
structn0fun | Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isstruct2im 12171 | . 2 Struct | |
2 | 1 | simp2d 995 | 1 Struct |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cdif 3099 cin 3101 wss 3102 c0 3394 csn 3560 class class class wbr 3965 cxp 4583 cdm 4585 wfun 5163 cfv 5169 cle 7907 cn 8827 cfz 9905 Struct cstr 12157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-iota 5134 df-fun 5171 df-fv 5177 df-struct 12163 |
This theorem is referenced by: structcnvcnv 12177 structfung 12178 setsn0fun 12198 |
Copyright terms: Public domain | W3C validator |