ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structn0fun Unicode version

Theorem structn0fun 12493
Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.)
Assertion
Ref Expression
structn0fun  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )

Proof of Theorem structn0fun
StepHypRef Expression
1 isstruct2im 12490 . 2  |-  ( F Struct  X  ->  ( X  e.  (  <_  i^i  ( NN  X.  NN ) )  /\  Fun  ( F 
\  { (/) } )  /\  dom  F  C_  ( ... `  X ) ) )
21simp2d 1012 1  |-  ( F Struct  X  ->  Fun  ( F  \  { (/) } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2160    \ cdif 3141    i^i cin 3143    C_ wss 3144   (/)c0 3437   {csn 3607   class class class wbr 4018    X. cxp 4639   dom cdm 4641   Fun wfun 5225   ` cfv 5231    <_ cle 8011   NNcn 8937   ...cfz 10026   Struct cstr 12476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4189  ax-pr 4224
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-rab 2477  df-v 2754  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-iota 5193  df-fun 5233  df-fv 5239  df-struct 12482
This theorem is referenced by:  structcnvcnv  12496  structfung  12497  setsn0fun  12517
  Copyright terms: Public domain W3C validator