| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > opelstrsl | Unicode version | ||
| Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) | 
| Ref | Expression | 
|---|---|
| opelstrsl.e | 
 | 
| opelstrsl.s | 
 | 
| opelstrsl.v | 
 | 
| opelstrsl.el | 
 | 
| Ref | Expression | 
|---|---|
| opelstrsl | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opelstrsl.e | 
. 2
 | |
| 2 | opelstrsl.s | 
. . 3
 | |
| 3 | structex 12690 | 
. . 3
 | |
| 4 | 2, 3 | syl 14 | 
. 2
 | 
| 5 | structfung 12695 | 
. . 3
 | |
| 6 | 2, 5 | syl 14 | 
. 2
 | 
| 7 | opelstrsl.el | 
. 2
 | |
| 8 | opelstrsl.v | 
. 2
 | |
| 9 | 1, 4, 6, 7, 8 | strslfv2d 12721 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fv 5266 df-struct 12680 df-slot 12682 | 
| This theorem is referenced by: opelstrbas 12793 2strop1g 12801 rngplusgg 12814 rngmulrg 12815 srngplusgd 12825 srngmulrd 12826 srnginvld 12827 lmodplusgd 12843 lmodscad 12844 lmodvscad 12845 ipsaddgd 12855 ipsmulrd 12856 ipsscad 12857 ipsvscad 12858 ipsipd 12859 topgrpplusgd 12875 topgrptsetd 12876 psrplusgg 14230 | 
| Copyright terms: Public domain | W3C validator |