ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelstrsl Unicode version

Theorem opelstrsl 12979
Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.)
Hypotheses
Ref Expression
opelstrsl.e  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
opelstrsl.s  |-  ( ph  ->  S Struct  X )
opelstrsl.v  |-  ( ph  ->  V  e.  Y )
opelstrsl.el  |-  ( ph  -> 
<. ( E `  ndx ) ,  V >.  e.  S )
Assertion
Ref Expression
opelstrsl  |-  ( ph  ->  V  =  ( E `
 S ) )

Proof of Theorem opelstrsl
StepHypRef Expression
1 opelstrsl.e . 2  |-  ( E  = Slot  ( E `  ndx )  /\  ( E `  ndx )  e.  NN )
2 opelstrsl.s . . 3  |-  ( ph  ->  S Struct  X )
3 structex 12877 . . 3  |-  ( S Struct  X  ->  S  e.  _V )
42, 3syl 14 . 2  |-  ( ph  ->  S  e.  _V )
5 structfung 12882 . . 3  |-  ( S Struct  X  ->  Fun  `' `' S )
62, 5syl 14 . 2  |-  ( ph  ->  Fun  `' `' S
)
7 opelstrsl.el . 2  |-  ( ph  -> 
<. ( E `  ndx ) ,  V >.  e.  S )
8 opelstrsl.v . 2  |-  ( ph  ->  V  e.  Y )
91, 4, 6, 7, 8strslfv2d 12908 1  |-  ( ph  ->  V  =  ( E `
 S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   _Vcvv 2772   <.cop 3636   class class class wbr 4045   `'ccnv 4675   Fun wfun 5266   ` cfv 5272   NNcn 9038   Struct cstr 12861   ndxcnx 12862  Slot cslot 12864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-iota 5233  df-fun 5274  df-fv 5280  df-struct 12867  df-slot 12869
This theorem is referenced by:  opelstrbas  12980  2strop1g  12989  rngplusgg  13002  rngmulrg  13003  srngplusgd  13013  srngmulrd  13014  srnginvld  13015  lmodplusgd  13031  lmodscad  13032  lmodvscad  13033  ipsaddgd  13043  ipsmulrd  13044  ipsscad  13045  ipsvscad  13046  ipsipd  13047  topgrpplusgd  13063  topgrptsetd  13064  psrplusgg  14473  edgfiedgval2dom  15665
  Copyright terms: Public domain W3C validator