Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelstrsl | Unicode version |
Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
opelstrsl.e | Slot |
opelstrsl.s | Struct |
opelstrsl.v | |
opelstrsl.el |
Ref | Expression |
---|---|
opelstrsl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelstrsl.e | . 2 Slot | |
2 | opelstrsl.s | . . 3 Struct | |
3 | structex 12428 | . . 3 Struct | |
4 | 2, 3 | syl 14 | . 2 |
5 | structfung 12433 | . . 3 Struct | |
6 | 2, 5 | syl 14 | . 2 |
7 | opelstrsl.el | . 2 | |
8 | opelstrsl.v | . 2 | |
9 | 1, 4, 6, 7, 8 | strslfv2d 12458 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cvv 2730 cop 3586 class class class wbr 3989 ccnv 4610 wfun 5192 cfv 5198 cn 8878 Struct cstr 12412 cnx 12413 Slot cslot 12415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-struct 12418 df-slot 12420 |
This theorem is referenced by: opelstrbas 12515 2strop1g 12523 rngplusgg 12535 rngmulrg 12536 srngplusgd 12542 srngmulrd 12543 srnginvld 12544 lmodplusgd 12553 lmodscad 12554 lmodvscad 12555 ipsaddgd 12561 ipsmulrd 12562 ipsscad 12563 ipsvscad 12564 ipsipd 12565 topgrpplusgd 12571 topgrptsetd 12572 |
Copyright terms: Public domain | W3C validator |