| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelstrsl | Unicode version | ||
| Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
| Ref | Expression |
|---|---|
| opelstrsl.e |
|
| opelstrsl.s |
|
| opelstrsl.v |
|
| opelstrsl.el |
|
| Ref | Expression |
|---|---|
| opelstrsl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelstrsl.e |
. 2
| |
| 2 | opelstrsl.s |
. . 3
| |
| 3 | structex 13005 |
. . 3
| |
| 4 | 2, 3 | syl 14 |
. 2
|
| 5 | structfung 13010 |
. . 3
| |
| 6 | 2, 5 | syl 14 |
. 2
|
| 7 | opelstrsl.el |
. 2
| |
| 8 | opelstrsl.v |
. 2
| |
| 9 | 1, 4, 6, 7, 8 | strslfv2d 13036 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4179 ax-pow 4235 ax-pr 4270 ax-un 4499 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2779 df-sbc 3007 df-dif 3177 df-un 3179 df-in 3181 df-ss 3188 df-nul 3470 df-pw 3629 df-sn 3650 df-pr 3651 df-op 3653 df-uni 3866 df-br 4061 df-opab 4123 df-mpt 4124 df-id 4359 df-xp 4700 df-rel 4701 df-cnv 4702 df-co 4703 df-dm 4704 df-rn 4705 df-res 4706 df-iota 5252 df-fun 5293 df-fv 5299 df-struct 12995 df-slot 12997 |
| This theorem is referenced by: opelstrbas 13108 2strop1g 13117 rngplusgg 13130 rngmulrg 13131 srngplusgd 13141 srngmulrd 13142 srnginvld 13143 lmodplusgd 13159 lmodscad 13160 lmodvscad 13161 ipsaddgd 13171 ipsmulrd 13172 ipsscad 13173 ipsvscad 13174 ipsipd 13175 topgrpplusgd 13191 topgrptsetd 13192 psrplusgg 14601 edgfiedgval2dom 15795 |
| Copyright terms: Public domain | W3C validator |