Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelstrsl | Unicode version |
Description: The slot of a structure which contains an ordered pair for that slot. (Contributed by Jim Kingdon, 5-Feb-2023.) |
Ref | Expression |
---|---|
opelstrsl.e | Slot |
opelstrsl.s | Struct |
opelstrsl.v | |
opelstrsl.el |
Ref | Expression |
---|---|
opelstrsl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelstrsl.e | . 2 Slot | |
2 | opelstrsl.s | . . 3 Struct | |
3 | structex 12173 | . . 3 Struct | |
4 | 2, 3 | syl 14 | . 2 |
5 | structfung 12178 | . . 3 Struct | |
6 | 2, 5 | syl 14 | . 2 |
7 | opelstrsl.el | . 2 | |
8 | opelstrsl.v | . 2 | |
9 | 1, 4, 6, 7, 8 | strslfv2d 12203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 cvv 2712 cop 3563 class class class wbr 3965 ccnv 4584 wfun 5163 cfv 5169 cn 8827 Struct cstr 12157 cnx 12158 Slot cslot 12160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-iota 5134 df-fun 5171 df-fv 5177 df-struct 12163 df-slot 12165 |
This theorem is referenced by: opelstrbas 12258 2strop1g 12266 rngplusgg 12278 rngmulrg 12279 srngplusgd 12285 srngmulrd 12286 srnginvld 12287 lmodplusgd 12296 lmodscad 12297 lmodvscad 12298 ipsaddgd 12304 ipsmulrd 12305 ipsscad 12306 ipsvscad 12307 ipsipd 12308 topgrpplusgd 12314 topgrptsetd 12315 |
Copyright terms: Public domain | W3C validator |