![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > structn0fun | GIF version |
Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.) |
Ref | Expression |
---|---|
structn0fun | ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isstruct2im 12521 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) | |
2 | 1 | simp2d 1012 | 1 ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 ∖ cdif 3141 ∩ cin 3143 ⊆ wss 3144 ∅c0 3437 {csn 3607 class class class wbr 4018 × cxp 4642 dom cdm 4644 Fun wfun 5229 ‘cfv 5235 ≤ cle 8022 ℕcn 8948 ...cfz 10037 Struct cstr 12507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-rab 2477 df-v 2754 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-iota 5196 df-fun 5237 df-fv 5243 df-struct 12513 |
This theorem is referenced by: structcnvcnv 12527 structfung 12528 setsn0fun 12548 |
Copyright terms: Public domain | W3C validator |