![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > structn0fun | GIF version |
Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.) |
Ref | Expression |
---|---|
structn0fun | ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isstruct2im 12628 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) | |
2 | 1 | simp2d 1012 | 1 ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ∖ cdif 3150 ∩ cin 3152 ⊆ wss 3153 ∅c0 3446 {csn 3618 class class class wbr 4029 × cxp 4657 dom cdm 4659 Fun wfun 5248 ‘cfv 5254 ≤ cle 8055 ℕcn 8982 ...cfz 10074 Struct cstr 12614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-struct 12620 |
This theorem is referenced by: structcnvcnv 12634 structfung 12635 setsn0fun 12655 |
Copyright terms: Public domain | W3C validator |