ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structn0fun GIF version

Theorem structn0fun 12889
Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.)
Assertion
Ref Expression
structn0fun (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))

Proof of Theorem structn0fun
StepHypRef Expression
1 isstruct2im 12886 . 2 (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
21simp2d 1013 1 (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177  cdif 3164  cin 3166  wss 3167  c0 3461  {csn 3634   class class class wbr 4047   × cxp 4677  dom cdm 4679  Fun wfun 5270  cfv 5276  cle 8115  cn 9043  ...cfz 10137   Struct cstr 12872
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-struct 12878
This theorem is referenced by:  structcnvcnv  12892  structfung  12893  setsn0fun  12913  basvtxval2dom  15677  edgfiedgval2dom  15678  structiedg0val  15683
  Copyright terms: Public domain W3C validator