ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structn0fun GIF version

Theorem structn0fun 12634
Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.)
Assertion
Ref Expression
structn0fun (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))

Proof of Theorem structn0fun
StepHypRef Expression
1 isstruct2im 12631 . 2 (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
21simp2d 1012 1 (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2164  cdif 3151  cin 3153  wss 3154  c0 3447  {csn 3619   class class class wbr 4030   × cxp 4658  dom cdm 4660  Fun wfun 5249  cfv 5255  cle 8057  cn 8984  ...cfz 10077   Struct cstr 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-struct 12623
This theorem is referenced by:  structcnvcnv  12637  structfung  12638  setsn0fun  12658
  Copyright terms: Public domain W3C validator