ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  structn0fun GIF version

Theorem structn0fun 11656
Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.)
Assertion
Ref Expression
structn0fun (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))

Proof of Theorem structn0fun
StepHypRef Expression
1 isstruct2im 11653 . 2 (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋)))
21simp2d 959 1 (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅}))
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1445  cdif 3010  cin 3012  wss 3013  c0 3302  {csn 3466   class class class wbr 3867   × cxp 4465  dom cdm 4467  Fun wfun 5043  cfv 5049  cle 7620  cn 8520  ...cfz 9573   Struct cstr 11639
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-rab 2379  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-opab 3922  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-iota 5014  df-fun 5051  df-fv 5057  df-struct 11645
This theorem is referenced by:  structcnvcnv  11659  structfung  11660  setsn0fun  11680
  Copyright terms: Public domain W3C validator