| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > structn0fun | GIF version | ||
| Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.) |
| Ref | Expression |
|---|---|
| structn0fun | ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isstruct2im 12886 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) | |
| 2 | 1 | simp2d 1013 | 1 ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2177 ∖ cdif 3164 ∩ cin 3166 ⊆ wss 3167 ∅c0 3461 {csn 3634 class class class wbr 4047 × cxp 4677 dom cdm 4679 Fun wfun 5270 ‘cfv 5276 ≤ cle 8115 ℕcn 9043 ...cfz 10137 Struct cstr 12872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-iota 5237 df-fun 5278 df-fv 5284 df-struct 12878 |
| This theorem is referenced by: structcnvcnv 12892 structfung 12893 setsn0fun 12913 basvtxval2dom 15677 edgfiedgval2dom 15678 structiedg0val 15683 |
| Copyright terms: Public domain | W3C validator |