| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > structn0fun | GIF version | ||
| Description: A structure without the empty set is a function. (Contributed by AV, 13-Nov-2021.) |
| Ref | Expression |
|---|---|
| structn0fun | ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isstruct2im 12713 | . 2 ⊢ (𝐹 Struct 𝑋 → (𝑋 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝐹 ∖ {∅}) ∧ dom 𝐹 ⊆ (...‘𝑋))) | |
| 2 | 1 | simp2d 1012 | 1 ⊢ (𝐹 Struct 𝑋 → Fun (𝐹 ∖ {∅})) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 ∖ cdif 3154 ∩ cin 3156 ⊆ wss 3157 ∅c0 3451 {csn 3623 class class class wbr 4034 × cxp 4662 dom cdm 4664 Fun wfun 5253 ‘cfv 5259 ≤ cle 8079 ℕcn 9007 ...cfz 10100 Struct cstr 12699 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-struct 12705 |
| This theorem is referenced by: structcnvcnv 12719 structfung 12720 setsn0fun 12740 |
| Copyright terms: Public domain | W3C validator |