![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp2d | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
simp2d |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simp2 1000 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simp2bi 1015 erinxp 6665 resixp 6789 exmidapne 7322 addcanprleml 7676 addcanprlemu 7677 ltmprr 7704 lelttrdi 8447 ixxdisj 9972 ixxss1 9973 ixxss2 9974 ixxss12 9975 iccgelb 10001 iccss2 10013 icodisj 10061 ioom 10332 elicore 10338 flqdiv 10395 mulqaddmodid 10438 modsumfzodifsn 10470 addmodlteq 10472 immul 11026 sumtp 11560 crth 12365 phimullem 12366 eulerthlem1 12368 eulerthlema 12371 eulerthlemh 12372 eulerthlemth 12373 ctiunct 12600 structn0fun 12634 strleund 12724 strext 12726 mhmlin 13042 subm0cl 13053 eqger 13297 eqgcpbl 13301 lmodvsdi 13810 lss0cl 13868 rnglidlmsgrp 13996 2idlcpblrng 14022 lmcl 14424 lmtopcnp 14429 xmeter 14615 tgqioo 14734 ivthinclemlopn 14815 ivthinclemuopn 14817 limcimolemlt 14843 limcresi 14845 limccnpcntop 14854 limccnp2lem 14855 limccnp2cntop 14856 cosordlem 15025 |
Copyright terms: Public domain | W3C validator |