ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simp2d Unicode version

Theorem simp2d 959
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.)
Hypothesis
Ref Expression
3simp1d.1  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
Assertion
Ref Expression
simp2d  |-  ( ph  ->  ch )

Proof of Theorem simp2d
StepHypRef Expression
1 3simp1d.1 . 2  |-  ( ph  ->  ( ps  /\  ch  /\ 
th ) )
2 simp2 947 . 2  |-  ( ( ps  /\  ch  /\  th )  ->  ch )
31, 2syl 14 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 927
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 929
This theorem is referenced by:  simp2bi  962  erinxp  6406  resixp  6530  addcanprleml  7270  addcanprlemu  7271  ltmprr  7298  lelttrdi  8001  ixxdisj  9469  ixxss1  9470  ixxss2  9471  ixxss12  9472  iccgelb  9498  iccss2  9510  icodisj  9558  ioom  9821  flqdiv  9877  mulqaddmodid  9920  modsumfzodifsn  9952  addmodlteq  9954  immul  10444  sumtp  10973  crth  11643  phimullem  11644  structn0fun  11672  strleund  11747  lmcl  12112  lmtopcnp  12117  xmeter  12238  tgqioo  12337
  Copyright terms: Public domain W3C validator