| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp2 1000 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp2bi 1015 erinxp 6695 resixp 6819 exmidapne 7371 addcanprleml 7726 addcanprlemu 7727 ltmprr 7754 lelttrdi 8498 ixxdisj 10024 ixxss1 10025 ixxss2 10026 ixxss12 10027 iccgelb 10053 iccss2 10065 icodisj 10113 ioom 10401 elicore 10407 flqdiv 10464 mulqaddmodid 10507 modsumfzodifsn 10539 addmodlteq 10541 immul 11132 sumtp 11667 crth 12488 phimullem 12489 eulerthlem1 12491 eulerthlema 12494 eulerthlemh 12495 eulerthlemth 12496 ctiunct 12753 structn0fun 12787 strleund 12877 strext 12879 mhmlin 13241 subm0cl 13252 eqger 13502 eqgcpbl 13506 lmodvsdi 14015 lss0cl 14073 rnglidlmsgrp 14201 2idlcpblrng 14227 lmcl 14659 lmtopcnp 14664 xmeter 14850 tgqioo 14969 ivthinclemlopn 15050 ivthinclemuopn 15052 limcimolemlt 15078 limcresi 15080 limccnpcntop 15089 limccnp2lem 15090 limccnp2cntop 15091 cosordlem 15263 perfectlem2 15414 |
| Copyright terms: Public domain | W3C validator |