| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp2 1022 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simp2bi 1037 erinxp 6754 resixp 6878 exmidapne 7442 addcanprleml 7797 addcanprlemu 7798 ltmprr 7825 lelttrdi 8569 ixxdisj 10095 ixxss1 10096 ixxss2 10097 ixxss12 10098 iccgelb 10124 iccss2 10136 icodisj 10184 ioom 10475 elicore 10481 flqdiv 10538 mulqaddmodid 10581 modsumfzodifsn 10613 addmodlteq 10615 immul 11385 sumtp 11920 crth 12741 phimullem 12742 eulerthlem1 12744 eulerthlema 12747 eulerthlemh 12748 eulerthlemth 12749 ctiunct 13006 structn0fun 13040 strleund 13131 strext 13133 mhmlin 13495 subm0cl 13506 eqger 13756 eqgcpbl 13760 lmodvsdi 14269 lss0cl 14327 rnglidlmsgrp 14455 2idlcpblrng 14481 lmcl 14913 lmtopcnp 14918 xmeter 15104 tgqioo 15223 ivthinclemlopn 15304 ivthinclemuopn 15306 limcimolemlt 15332 limcresi 15334 limccnpcntop 15343 limccnp2lem 15344 limccnp2cntop 15345 cosordlem 15517 perfectlem2 15668 wlkpg 16035 |
| Copyright terms: Public domain | W3C validator |