| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp2 1000 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp2bi 1015 erinxp 6686 resixp 6810 exmidapne 7354 addcanprleml 7709 addcanprlemu 7710 ltmprr 7737 lelttrdi 8481 ixxdisj 10007 ixxss1 10008 ixxss2 10009 ixxss12 10010 iccgelb 10036 iccss2 10048 icodisj 10096 ioom 10384 elicore 10390 flqdiv 10447 mulqaddmodid 10490 modsumfzodifsn 10522 addmodlteq 10524 immul 11109 sumtp 11644 crth 12465 phimullem 12466 eulerthlem1 12468 eulerthlema 12471 eulerthlemh 12472 eulerthlemth 12473 ctiunct 12730 structn0fun 12764 strleund 12854 strext 12856 mhmlin 13217 subm0cl 13228 eqger 13478 eqgcpbl 13482 lmodvsdi 13991 lss0cl 14049 rnglidlmsgrp 14177 2idlcpblrng 14203 lmcl 14635 lmtopcnp 14640 xmeter 14826 tgqioo 14945 ivthinclemlopn 15026 ivthinclemuopn 15028 limcimolemlt 15054 limcresi 15056 limccnpcntop 15065 limccnp2lem 15066 limccnp2cntop 15067 cosordlem 15239 perfectlem2 15390 |
| Copyright terms: Public domain | W3C validator |