Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp2d | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 |
Ref | Expression |
---|---|
simp2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 | |
2 | simp2 998 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: simp2bi 1013 erinxp 6599 resixp 6723 addcanprleml 7588 addcanprlemu 7589 ltmprr 7616 lelttrdi 8357 ixxdisj 9874 ixxss1 9875 ixxss2 9876 ixxss12 9877 iccgelb 9903 iccss2 9915 icodisj 9963 ioom 10231 elicore 10237 flqdiv 10291 mulqaddmodid 10334 modsumfzodifsn 10366 addmodlteq 10368 immul 10856 sumtp 11390 crth 12191 phimullem 12192 eulerthlem1 12194 eulerthlema 12197 eulerthlemh 12198 eulerthlemth 12199 ctiunct 12408 structn0fun 12442 strleund 12528 mhmlin 12730 subm0cl 12740 lmcl 13325 lmtopcnp 13330 xmeter 13516 tgqioo 13627 ivthinclemlopn 13694 ivthinclemuopn 13696 limcimolemlt 13713 limcresi 13715 limccnpcntop 13724 limccnp2lem 13725 limccnp2cntop 13726 cosordlem 13850 |
Copyright terms: Public domain | W3C validator |