| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp2d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp2 1001 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simp2bi 1016 erinxp 6709 resixp 6833 exmidapne 7392 addcanprleml 7747 addcanprlemu 7748 ltmprr 7775 lelttrdi 8519 ixxdisj 10045 ixxss1 10046 ixxss2 10047 ixxss12 10048 iccgelb 10074 iccss2 10086 icodisj 10134 ioom 10425 elicore 10431 flqdiv 10488 mulqaddmodid 10531 modsumfzodifsn 10563 addmodlteq 10565 immul 11265 sumtp 11800 crth 12621 phimullem 12622 eulerthlem1 12624 eulerthlema 12627 eulerthlemh 12628 eulerthlemth 12629 ctiunct 12886 structn0fun 12920 strleund 13010 strext 13012 mhmlin 13374 subm0cl 13385 eqger 13635 eqgcpbl 13639 lmodvsdi 14148 lss0cl 14206 rnglidlmsgrp 14334 2idlcpblrng 14360 lmcl 14792 lmtopcnp 14797 xmeter 14983 tgqioo 15102 ivthinclemlopn 15183 ivthinclemuopn 15185 limcimolemlt 15211 limcresi 15213 limccnpcntop 15222 limccnp2lem 15223 limccnp2cntop 15224 cosordlem 15396 perfectlem2 15547 |
| Copyright terms: Public domain | W3C validator |