| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simp2d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| 3simp1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| simp2d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3simp1d.1 | 
. 2
 | |
| 2 | simp2 1000 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simp2bi 1015 erinxp 6668 resixp 6792 exmidapne 7327 addcanprleml 7681 addcanprlemu 7682 ltmprr 7709 lelttrdi 8453 ixxdisj 9978 ixxss1 9979 ixxss2 9980 ixxss12 9981 iccgelb 10007 iccss2 10019 icodisj 10067 ioom 10350 elicore 10356 flqdiv 10413 mulqaddmodid 10456 modsumfzodifsn 10488 addmodlteq 10490 immul 11044 sumtp 11579 crth 12392 phimullem 12393 eulerthlem1 12395 eulerthlema 12398 eulerthlemh 12399 eulerthlemth 12400 ctiunct 12657 structn0fun 12691 strleund 12781 strext 12783 mhmlin 13099 subm0cl 13110 eqger 13354 eqgcpbl 13358 lmodvsdi 13867 lss0cl 13925 rnglidlmsgrp 14053 2idlcpblrng 14079 lmcl 14481 lmtopcnp 14486 xmeter 14672 tgqioo 14791 ivthinclemlopn 14872 ivthinclemuopn 14874 limcimolemlt 14900 limcresi 14902 limccnpcntop 14911 limccnp2lem 14912 limccnp2cntop 14913 cosordlem 15085 perfectlem2 15236 | 
| Copyright terms: Public domain | W3C validator |