![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simp2d | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
simp2d |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simp2 1000 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simp2bi 1015 erinxp 6663 resixp 6787 exmidapne 7320 addcanprleml 7674 addcanprlemu 7675 ltmprr 7702 lelttrdi 8445 ixxdisj 9969 ixxss1 9970 ixxss2 9971 ixxss12 9972 iccgelb 9998 iccss2 10010 icodisj 10058 ioom 10329 elicore 10335 flqdiv 10392 mulqaddmodid 10435 modsumfzodifsn 10467 addmodlteq 10469 immul 11023 sumtp 11557 crth 12362 phimullem 12363 eulerthlem1 12365 eulerthlema 12368 eulerthlemh 12369 eulerthlemth 12370 ctiunct 12597 structn0fun 12631 strleund 12721 strext 12723 mhmlin 13039 subm0cl 13050 eqger 13294 eqgcpbl 13298 lmodvsdi 13807 lss0cl 13865 rnglidlmsgrp 13993 2idlcpblrng 14019 lmcl 14413 lmtopcnp 14418 xmeter 14604 tgqioo 14715 ivthinclemlopn 14790 ivthinclemuopn 14792 limcimolemlt 14818 limcresi 14820 limccnpcntop 14829 limccnp2lem 14830 limccnp2cntop 14831 cosordlem 14984 |
Copyright terms: Public domain | W3C validator |