| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordtri2or2exmid | Unicode version | ||
| Description: Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 29-Aug-2021.) |
| Ref | Expression |
|---|---|
| ordtri2or2exmid.1 |
|
| Ref | Expression |
|---|---|
| ordtri2or2exmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtri2or2exmid.1 |
. . . 4
| |
| 2 | ordtri2or2exmidlem 4563 |
. . . . 5
| |
| 3 | suc0 4447 |
. . . . . 6
| |
| 4 | 0elon 4428 |
. . . . . . 7
| |
| 5 | 4 | onsuci 4553 |
. . . . . 6
|
| 6 | 3, 5 | eqeltrri 2270 |
. . . . 5
|
| 7 | sseq1 3207 |
. . . . . . 7
| |
| 8 | sseq2 3208 |
. . . . . . 7
| |
| 9 | 7, 8 | orbi12d 794 |
. . . . . 6
|
| 10 | sseq2 3208 |
. . . . . . 7
| |
| 11 | sseq1 3207 |
. . . . . . 7
| |
| 12 | 10, 11 | orbi12d 794 |
. . . . . 6
|
| 13 | 9, 12 | rspc2va 2882 |
. . . . 5
|
| 14 | 2, 6, 13 | mpanl12 436 |
. . . 4
|
| 15 | 1, 14 | ax-mp 5 |
. . 3
|
| 16 | elirr 4578 |
. . . . 5
| |
| 17 | simpl 109 |
. . . . . . 7
| |
| 18 | simpr 110 |
. . . . . . . 8
| |
| 19 | p0ex 4222 |
. . . . . . . . . 10
| |
| 20 | 19 | prid2 3730 |
. . . . . . . . 9
|
| 21 | biidd 172 |
. . . . . . . . . 10
| |
| 22 | 21 | elrab3 2921 |
. . . . . . . . 9
|
| 23 | 20, 22 | ax-mp 5 |
. . . . . . . 8
|
| 24 | 18, 23 | sylibr 134 |
. . . . . . 7
|
| 25 | 17, 24 | sseldd 3185 |
. . . . . 6
|
| 26 | 25 | ex 115 |
. . . . 5
|
| 27 | 16, 26 | mtoi 665 |
. . . 4
|
| 28 | snssg 3757 |
. . . . . 6
| |
| 29 | 4, 28 | ax-mp 5 |
. . . . 5
|
| 30 | 0ex 4161 |
. . . . . . . 8
| |
| 31 | 30 | prid1 3729 |
. . . . . . 7
|
| 32 | biidd 172 |
. . . . . . . 8
| |
| 33 | 32 | elrab3 2921 |
. . . . . . 7
|
| 34 | 31, 33 | ax-mp 5 |
. . . . . 6
|
| 35 | 34 | biimpi 120 |
. . . . 5
|
| 36 | 29, 35 | sylbir 135 |
. . . 4
|
| 37 | 27, 36 | orim12i 760 |
. . 3
|
| 38 | 15, 37 | ax-mp 5 |
. 2
|
| 39 | orcom 729 |
. 2
| |
| 40 | 38, 39 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 df-suc 4407 |
| This theorem is referenced by: onintexmid 4610 |
| Copyright terms: Public domain | W3C validator |