ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtri2or2exmid Unicode version

Theorem ordtri2or2exmid 4555
Description: Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 29-Aug-2021.)
Hypothesis
Ref Expression
ordtri2or2exmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )
Assertion
Ref Expression
ordtri2or2exmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem ordtri2or2exmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ordtri2or2exmid.1 . . . 4  |-  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )
2 ordtri2or2exmidlem 4510 . . . . 5  |-  { z  e.  { (/) ,  { (/)
} }  |  ph }  e.  On
3 suc0 4396 . . . . . 6  |-  suc  (/)  =  { (/)
}
4 0elon 4377 . . . . . . 7  |-  (/)  e.  On
54onsuci 4500 . . . . . 6  |-  suc  (/)  e.  On
63, 5eqeltrri 2244 . . . . 5  |-  { (/) }  e.  On
7 sseq1 3170 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) ,  { (/) } }  |  ph }  ->  ( x  C_  y  <->  { z  e.  { (/) ,  { (/) } }  |  ph }  C_  y )
)
8 sseq2 3171 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) ,  { (/) } }  |  ph }  ->  ( y  C_  x  <->  y 
C_  { z  e. 
{ (/) ,  { (/) } }  |  ph }
) )
97, 8orbi12d 788 . . . . . 6  |-  ( x  =  { z  e. 
{ (/) ,  { (/) } }  |  ph }  ->  ( ( x  C_  y  \/  y  C_  x )  <->  ( {
z  e.  { (/) ,  { (/) } }  |  ph }  C_  y  \/  y  C_  { z  e. 
{ (/) ,  { (/) } }  |  ph }
) ) )
10 sseq2 3171 . . . . . . 7  |-  ( y  =  { (/) }  ->  ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  y  <->  { z  e.  { (/) ,  { (/) } }  |  ph }  C_  { (/) } ) )
11 sseq1 3170 . . . . . . 7  |-  ( y  =  { (/) }  ->  ( y  C_  { z  e.  { (/) ,  { (/) } }  |  ph }  <->  {
(/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph } ) )
1210, 11orbi12d 788 . . . . . 6  |-  ( y  =  { (/) }  ->  ( ( { z  e. 
{ (/) ,  { (/) } }  |  ph }  C_  y  \/  y  C_  { z  e.  { (/) ,  { (/) } }  |  ph } )  <->  ( {
z  e.  { (/) ,  { (/) } }  |  ph }  C_  { (/) }  \/  {
(/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph } ) ) )
139, 12rspc2va 2848 . . . . 5  |-  ( ( ( { z  e. 
{ (/) ,  { (/) } }  |  ph }  e.  On  /\  { (/) }  e.  On )  /\  A. x  e.  On  A. y  e.  On  (
x  C_  y  \/  y  C_  x ) )  ->  ( { z  e.  { (/) ,  { (/)
} }  |  ph }  C_  { (/) }  \/  {
(/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph } ) )
142, 6, 13mpanl12 434 . . . 4  |-  ( A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  ->  ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  \/  { (/) }  C_  { z  e.  { (/) ,  { (/) } }  |  ph } ) )
151, 14ax-mp 5 . . 3  |-  ( { z  e.  { (/) ,  { (/) } }  |  ph }  C_  { (/) }  \/  {
(/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph } )
16 elirr 4525 . . . . 5  |-  -.  { (/)
}  e.  { (/) }
17 simpl 108 . . . . . . 7  |-  ( ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  /\  ph )  ->  { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) } )
18 simpr 109 . . . . . . . 8  |-  ( ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  /\  ph )  ->  ph )
19 p0ex 4174 . . . . . . . . . 10  |-  { (/) }  e.  _V
2019prid2 3690 . . . . . . . . 9  |-  { (/) }  e.  { (/) ,  { (/)
} }
21 biidd 171 . . . . . . . . . 10  |-  ( z  =  { (/) }  ->  (
ph 
<-> 
ph ) )
2221elrab3 2887 . . . . . . . . 9  |-  ( {
(/) }  e.  { (/) ,  { (/) } }  ->  ( { (/) }  e.  {
z  e.  { (/) ,  { (/) } }  |  ph }  <->  ph ) )
2320, 22ax-mp 5 . . . . . . . 8  |-  ( {
(/) }  e.  { z  e.  { (/) ,  { (/)
} }  |  ph } 
<-> 
ph )
2418, 23sylibr 133 . . . . . . 7  |-  ( ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  /\  ph )  ->  { (/) }  e.  {
z  e.  { (/) ,  { (/) } }  |  ph } )
2517, 24sseldd 3148 . . . . . 6  |-  ( ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  /\  ph )  ->  { (/) }  e.  { (/)
} )
2625ex 114 . . . . 5  |-  ( { z  e.  { (/) ,  { (/) } }  |  ph }  C_  { (/) }  ->  (
ph  ->  { (/) }  e.  {
(/) } ) )
2716, 26mtoi 659 . . . 4  |-  ( { z  e.  { (/) ,  { (/) } }  |  ph }  C_  { (/) }  ->  -. 
ph )
28 snssg 3716 . . . . . 6  |-  ( (/)  e.  On  ->  ( (/)  e.  {
z  e.  { (/) ,  { (/) } }  |  ph }  <->  { (/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph } ) )
294, 28ax-mp 5 . . . . 5  |-  ( (/)  e.  { z  e.  { (/)
,  { (/) } }  |  ph }  <->  { (/) }  C_  { z  e.  { (/) ,  { (/) } }  |  ph } )
30 0ex 4116 . . . . . . . 8  |-  (/)  e.  _V
3130prid1 3689 . . . . . . 7  |-  (/)  e.  { (/)
,  { (/) } }
32 biidd 171 . . . . . . . 8  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
3332elrab3 2887 . . . . . . 7  |-  ( (/)  e.  { (/) ,  { (/) } }  ->  ( (/)  e.  {
z  e.  { (/) ,  { (/) } }  |  ph }  <->  ph ) )
3431, 33ax-mp 5 . . . . . 6  |-  ( (/)  e.  { z  e.  { (/)
,  { (/) } }  |  ph }  <->  ph )
3534biimpi 119 . . . . 5  |-  ( (/)  e.  { z  e.  { (/)
,  { (/) } }  |  ph }  ->  ph )
3629, 35sylbir 134 . . . 4  |-  ( {
(/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph }  ->  ph )
3727, 36orim12i 754 . . 3  |-  ( ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  \/  { (/) }  C_  { z  e.  { (/) ,  { (/) } }  |  ph } )  ->  ( -.  ph  \/  ph )
)
3815, 37ax-mp 5 . 2  |-  ( -. 
ph  \/  ph )
39 orcom 723 . 2  |-  ( ( -.  ph  \/  ph )  <->  (
ph  \/  -.  ph )
)
4038, 39mpbi 144 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452    C_ wss 3121   (/)c0 3414   {csn 3583   {cpr 3584   Oncon0 4348   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356
This theorem is referenced by:  onintexmid  4557
  Copyright terms: Public domain W3C validator