ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordtri2or2exmid Unicode version

Theorem ordtri2or2exmid 4377
Description: Ordinal trichotomy implies excluded middle. (Contributed by Jim Kingdon, 29-Aug-2021.)
Hypothesis
Ref Expression
ordtri2or2exmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )
Assertion
Ref Expression
ordtri2or2exmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem ordtri2or2exmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ordtri2or2exmid.1 . . . 4  |-  A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )
2 ordtri2or2exmidlem 4332 . . . . 5  |-  { z  e.  { (/) ,  { (/)
} }  |  ph }  e.  On
3 suc0 4229 . . . . . 6  |-  suc  (/)  =  { (/)
}
4 0elon 4210 . . . . . . 7  |-  (/)  e.  On
54onsuci 4323 . . . . . 6  |-  suc  (/)  e.  On
63, 5eqeltrri 2161 . . . . 5  |-  { (/) }  e.  On
7 sseq1 3045 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) ,  { (/) } }  |  ph }  ->  ( x  C_  y  <->  { z  e.  { (/) ,  { (/) } }  |  ph }  C_  y )
)
8 sseq2 3046 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) ,  { (/) } }  |  ph }  ->  ( y  C_  x  <->  y 
C_  { z  e. 
{ (/) ,  { (/) } }  |  ph }
) )
97, 8orbi12d 742 . . . . . 6  |-  ( x  =  { z  e. 
{ (/) ,  { (/) } }  |  ph }  ->  ( ( x  C_  y  \/  y  C_  x )  <->  ( {
z  e.  { (/) ,  { (/) } }  |  ph }  C_  y  \/  y  C_  { z  e. 
{ (/) ,  { (/) } }  |  ph }
) ) )
10 sseq2 3046 . . . . . . 7  |-  ( y  =  { (/) }  ->  ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  y  <->  { z  e.  { (/) ,  { (/) } }  |  ph }  C_  { (/) } ) )
11 sseq1 3045 . . . . . . 7  |-  ( y  =  { (/) }  ->  ( y  C_  { z  e.  { (/) ,  { (/) } }  |  ph }  <->  {
(/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph } ) )
1210, 11orbi12d 742 . . . . . 6  |-  ( y  =  { (/) }  ->  ( ( { z  e. 
{ (/) ,  { (/) } }  |  ph }  C_  y  \/  y  C_  { z  e.  { (/) ,  { (/) } }  |  ph } )  <->  ( {
z  e.  { (/) ,  { (/) } }  |  ph }  C_  { (/) }  \/  {
(/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph } ) ) )
139, 12rspc2va 2734 . . . . 5  |-  ( ( ( { z  e. 
{ (/) ,  { (/) } }  |  ph }  e.  On  /\  { (/) }  e.  On )  /\  A. x  e.  On  A. y  e.  On  (
x  C_  y  \/  y  C_  x ) )  ->  ( { z  e.  { (/) ,  { (/)
} }  |  ph }  C_  { (/) }  \/  {
(/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph } ) )
142, 6, 13mpanl12 427 . . . 4  |-  ( A. x  e.  On  A. y  e.  On  ( x  C_  y  \/  y  C_  x )  ->  ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  \/  { (/) }  C_  { z  e.  { (/) ,  { (/) } }  |  ph } ) )
151, 14ax-mp 7 . . 3  |-  ( { z  e.  { (/) ,  { (/) } }  |  ph }  C_  { (/) }  \/  {
(/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph } )
16 elirr 4347 . . . . 5  |-  -.  { (/)
}  e.  { (/) }
17 simpl 107 . . . . . . 7  |-  ( ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  /\  ph )  ->  { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) } )
18 simpr 108 . . . . . . . 8  |-  ( ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  /\  ph )  ->  ph )
19 p0ex 4014 . . . . . . . . . 10  |-  { (/) }  e.  _V
2019prid2 3544 . . . . . . . . 9  |-  { (/) }  e.  { (/) ,  { (/)
} }
21 biidd 170 . . . . . . . . . 10  |-  ( z  =  { (/) }  ->  (
ph 
<-> 
ph ) )
2221elrab3 2770 . . . . . . . . 9  |-  ( {
(/) }  e.  { (/) ,  { (/) } }  ->  ( { (/) }  e.  {
z  e.  { (/) ,  { (/) } }  |  ph }  <->  ph ) )
2320, 22ax-mp 7 . . . . . . . 8  |-  ( {
(/) }  e.  { z  e.  { (/) ,  { (/)
} }  |  ph } 
<-> 
ph )
2418, 23sylibr 132 . . . . . . 7  |-  ( ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  /\  ph )  ->  { (/) }  e.  {
z  e.  { (/) ,  { (/) } }  |  ph } )
2517, 24sseldd 3024 . . . . . 6  |-  ( ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  /\  ph )  ->  { (/) }  e.  { (/)
} )
2625ex 113 . . . . 5  |-  ( { z  e.  { (/) ,  { (/) } }  |  ph }  C_  { (/) }  ->  (
ph  ->  { (/) }  e.  {
(/) } ) )
2716, 26mtoi 625 . . . 4  |-  ( { z  e.  { (/) ,  { (/) } }  |  ph }  C_  { (/) }  ->  -. 
ph )
28 snssg 3568 . . . . . 6  |-  ( (/)  e.  On  ->  ( (/)  e.  {
z  e.  { (/) ,  { (/) } }  |  ph }  <->  { (/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph } ) )
294, 28ax-mp 7 . . . . 5  |-  ( (/)  e.  { z  e.  { (/)
,  { (/) } }  |  ph }  <->  { (/) }  C_  { z  e.  { (/) ,  { (/) } }  |  ph } )
30 0ex 3958 . . . . . . . 8  |-  (/)  e.  _V
3130prid1 3543 . . . . . . 7  |-  (/)  e.  { (/)
,  { (/) } }
32 biidd 170 . . . . . . . 8  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
3332elrab3 2770 . . . . . . 7  |-  ( (/)  e.  { (/) ,  { (/) } }  ->  ( (/)  e.  {
z  e.  { (/) ,  { (/) } }  |  ph }  <->  ph ) )
3431, 33ax-mp 7 . . . . . 6  |-  ( (/)  e.  { z  e.  { (/)
,  { (/) } }  |  ph }  <->  ph )
3534biimpi 118 . . . . 5  |-  ( (/)  e.  { z  e.  { (/)
,  { (/) } }  |  ph }  ->  ph )
3629, 35sylbir 133 . . . 4  |-  ( {
(/) }  C_  { z  e.  { (/) ,  { (/)
} }  |  ph }  ->  ph )
3727, 36orim12i 711 . . 3  |-  ( ( { z  e.  { (/)
,  { (/) } }  |  ph }  C_  { (/) }  \/  { (/) }  C_  { z  e.  { (/) ,  { (/) } }  |  ph } )  ->  ( -.  ph  \/  ph )
)
3815, 37ax-mp 7 . 2  |-  ( -. 
ph  \/  ph )
39 orcom 682 . 2  |-  ( ( -.  ph  \/  ph )  <->  (
ph  \/  -.  ph )
)
4038, 39mpbi 143 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    <-> wb 103    \/ wo 664    = wceq 1289    e. wcel 1438   A.wral 2359   {crab 2363    C_ wss 2997   (/)c0 3284   {csn 3441   {cpr 3442   Oncon0 4181   suc csuc 4183
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-nul 3957  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-uni 3649  df-tr 3929  df-iord 4184  df-on 4186  df-suc 4189
This theorem is referenced by:  onintexmid  4378
  Copyright terms: Public domain W3C validator