Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  supfz Unicode version

Theorem supfz 15715
Description: The supremum of a finite sequence of integers. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Jim Kingdon, 15-Oct-2022.)
Assertion
Ref Expression
supfz  |-  ( N  e.  ( ZZ>= `  M
)  ->  sup (
( M ... N
) ,  ZZ ,  <  )  =  N )

Proof of Theorem supfz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  ZZ )
21zred 9448 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  x  e.  RR )
3 simprr 531 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  ZZ )
43zred 9448 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  y  e.  RR )
52, 4lttri3d 8141 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( x  =  y  <->  ( -.  x  <  y  /\  -.  y  <  x ) ) )
6 eluzelz 9610 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
7 eluzfz2 10107 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
8 elfzle2 10103 . . . 4  |-  ( z  e.  ( M ... N )  ->  z  <_  N )
98adantl 277 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  z  <_  N )
10 elfzelz 10100 . . . . 5  |-  ( z  e.  ( M ... N )  ->  z  e.  ZZ )
1110zred 9448 . . . 4  |-  ( z  e.  ( M ... N )  ->  z  e.  RR )
126zred 9448 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  RR )
13 lenlt 8102 . . . 4  |-  ( ( z  e.  RR  /\  N  e.  RR )  ->  ( z  <_  N  <->  -.  N  <  z ) )
1411, 12, 13syl2anr 290 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  (
z  <_  N  <->  -.  N  <  z ) )
159, 14mpbid 147 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  z  e.  ( M ... N
) )  ->  -.  N  <  z )
165, 6, 7, 15supmaxti 7070 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  sup (
( M ... N
) ,  ZZ ,  <  )  =  N )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   supcsup 7048   RRcr 7878    < clt 8061    <_ cle 8062   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-pre-ltirr 7991  ax-pre-apti 7994
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-neg 8200  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator