ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tgtop11 Unicode version

Theorem tgtop11 14663
Description: The topology generation function is one-to-one when applied to completed topologies. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
tgtop11  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  ( topGen `
 J )  =  ( topGen `  K )
)  ->  J  =  K )

Proof of Theorem tgtop11
StepHypRef Expression
1 tgtop 14655 . . 3  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
2 tgtop 14655 . . 3  |-  ( K  e.  Top  ->  ( topGen `
 K )  =  K )
31, 2eqeqan12d 2223 . 2  |-  ( ( J  e.  Top  /\  K  e.  Top )  ->  ( ( topGen `  J
)  =  ( topGen `  K )  <->  J  =  K ) )
43biimp3a 1358 1  |-  ( ( J  e.  Top  /\  K  e.  Top  /\  ( topGen `
 J )  =  ( topGen `  K )
)  ->  J  =  K )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290   topGenctg 13201   Topctop 14584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-topgen 13207  df-top 14585
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator